• Title/Summary/Keyword: Maximum detection range

Search Result 206, Processing Time 0.029 seconds

Design of Anisotropic Magnetoresistance Sensor Module for Vehicle Detection (차량감지를 위한 이방성 자기저항센서 모듈의 설계)

  • Choi, Hak-Yun;Lee, Hyeong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.99-105
    • /
    • 2011
  • This paper is about the design of 3-axis magnetic sensor module which detects parking and moving vehicle. For the sensor module, MR Sensor from Honeywell of which maximum measurement range is ${\pm}2$[G] is used. It also consisted of amplifier and sensor filter and fabricated $30{\times}50$[mm] PCB. Fabricated sensor module produced helmholtz coil of which the length is 1.2[m] of 3-axis to know the performance. It installed sensor module at the center and measured the detected magnetic field. In result, 3-axis were detected as 0.2~0.3[mG] and the drift of the fluctuation of magnetic field was stabilized at 0.03[mG] unit. For the performance evaluation of the vehicle detection, after the entry and parking of the vehicle, variation of magnetic field was measured as 0.323~0.695[G] which the average 0.5[G] of the earth magnetic field was the center and the range of variation was confirmed as 0.37[G]. Therefore, the designed magnetic sensor can be used as the vehicle detection sensor module.

A Study on Transmitter and Receiver Design of Proximity Magnetic Sensor for Enhancement of Target Detection Range (표적 탐지거리 향상을 위한 근접자기센서 송수신기 설계에 관한 연구)

  • Ju, Hye-Sun;Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1151-1158
    • /
    • 2011
  • Proximity magnetic sensor is able to detect the object target accurately in close range and it has been widely used in the underwater guided weapon system because there is no countermeasures from the target. In order to increase the damage of target by shock wave due to explosion of the underwater guided weapon system, the maximum detection range of the proximity magnetic sensor needs to be increased. In this paper, we describe the techniques of the optimum transmitting and receiving coils design using the Finite Element Method for the output power enhancement of the transmitter and the sensitivity improvement of the receiver. Finally, the proposed design techniques of the transmitter and the receiver were verified using a experimental setup and a prototype.

A Study on the Transmitter Design for Transmitting Output Power Enhancement of Active Magnetic Sensor (능동형 자기센서의 송신출력 향상을 위한 송신기 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.159-165
    • /
    • 2013
  • A active magnetic sensor has been widely used in the underwater guided weapon system because it is able to detect a target accurately in close range, but the target doesn't have any good countermeasure to overcome the threat from the active magnetic sensor. Recently, in order to increase the damage area of target by shock wave with explosion of the underwater weapon system and to detect small target, the maximum target detection range of the active magnetic sensor needs to be increased. One method for improving maximum target detection range is to improve output power from transmitter through demagnetization factor minimization of a transmitting core. Thus, in this paper, we describe the study results on the transmitter core shape design to enhance output power of the active magnetic sensor.

Design of EMC countermeasures for radar signal processing board (레이다 신호처리 보드의 EMC 대책 설계)

  • Hong-Rak Kim;Man-hee Lee;Youn-Jin Kim;Seong-ho Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.41-46
    • /
    • 2023
  • It is very important to meet the maximum detection range in a radar system. In order to meet the maximum detection Range, the sensitivity of the received signal of the radar system must be high. In addition, the dynamic range should be wide in the radar signal processing board. To meet these requirements, the signal processing board must be designed to be robust against external and internal noise. In particular, a design is required to minimize the effect of noise generated by various switching circuits inside the board on the received radar signal. In this paper, we derive the requirements of the signal processor board to meet the radar system performance and describe the design to meet the derived requirements. In addition, the EMC design to minimize the influence of noise input from the outside or generated from the inside is described. Confirm the secured performance through the test of the manufactured board.

Damage Detection in Fiber Reinforced Composites Containing Electrically Conductive Phases

  • Shin, Soon-Gi;Hideaki Matsubara
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Fiber reinforced plastic (FRP) composites and ceramic matrix composites (CMC) which contain electrically conductive phases have been designed and fabricated to introduce the detection capability of damage/fracture detection into these materials. The composites were made electrically conductive by adding carbon and TiN particles into FRP and CMC, respectively. The resistance of the conductive FRP containing carbon particles showed almost linear response to strain and high sensitivity over a wide range of strains. After each load-unload cycle the FRP retained a residual resistance, which increased with applied maximum stress or strain. The FRP with carbon particles embedded in cement (mortar) specimens enabled micro-crack formation and propagation in the mortar to be detected in situ. The CMC materials exhibited not only sensitive response to the applied strain but also an increase in resistance with increasing number of load-unload cycles during cyclic load testing. These results show that it is possible to use these composites to detect and/or fracture in structural materials, which are required to monitor the healthiness or safety in industrial applications and public constructions.

  • PDF

Analysis of the range estimation error of a target in the asynchronous bistatic sonar (비동기 양상태 소나의 표적 거리 추정 오차 분석)

  • Jeong, Euicheol;Kim, Tae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • The asynchronous bistatic sonar needs to estimate direct blast arrival time at a receiver to localize targets, and therefore the direct blast arrival time estimation error could be added to target localization error in comparison with synchronous system. Direct blast especially appears as several peaks at the matched filter output by multipath, thus we compared the first peak detection technique and the maximum peak detection technique of those peaks for direct blast arrival time estimation through sea trial data. The test was performed in a shallow sea with bistatic sonar made up of spatially separated source and line array sensors. Line array sensors obtained the target signal which is generated from the echo repeater. As a result, the first peak detection technique is superior to maximum peak detection technique in direct blast arrival time estimation error. The result of this analysis will be used for further research of target tracking in the asynchronous bistatic sonar.

Analysis of Interference Protection Criteria for Interoperability of Radar Systems (레이다 시스템 상호 간 운용을 위한 간섭 보호 기준 분석)

  • Kim, Jung;Jung, Jung-Soo;Kwag, Young-Kil;Kim, Jin-Goog;Jeon, Young-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.434-441
    • /
    • 2014
  • Recently, a mutual interference threat has been increasing among the radar systems due to the rapid growth of the military radar operation. In this paper, the radar interference protection criteria is presented for interoperability in terms of the radar coverage and target detection probability in association with the international recommendation on the interference spectrum by ITU-R. The required criteria for the minimum allowable interference is also presented in terms of INR. In order to ensure the maximum detection probability of the radar under the mutual interference situation, only 5 % of detection range loss is allowed for the case of INR of -6 dB, and required SNR is presented at each INR in terms of the detection range and detection probability. This result will be useful for establishing the interference protection criteria in the combined military radar systems.

Design and Implementation of a Low-Complexity and High-Throughput MIMO Symbol Detector Supporting up to 256 QAM (256 QAM까지 지원 가능한 저 복잡도 고 성능의 MIMO 심볼 검파기의 설계 및 구현)

  • Lee, Gwang-Ho;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.34-42
    • /
    • 2014
  • This paper presents a low-complexity and high-throughput symbol detector for two-spatial-stream multiple-input multiple-output systems based on the modified maximum-likelihood symbol detection algorithm. In the proposed symbol detector, the cost function is calculated incrementally employing a multi-cycle architecture so as to eliminate the complex multiplications for each symbol, and the slicing operations are performed hierarchically according to the range of constellation points by a pipelined architecture. The proposed architecture exhibits low hardware complexity while supporting complicated modulations such as 256 QAM. In addition, various modulations and antenna configurations are supported flexibly by reconfiguring the pipeline for the slicing operation. The proposed symbol detector is implemented with 38.7K logic gates in a $0.11-{\mu}m$ CMOS process and its throughput is 166 Mbps for $2{\times}$3 16-QAM and 80Mbps for $2{\times}3$ 64-QAM where the operating frequency is 478 MHz.

Detection of Left Ventricular Contours Based on Elliptic Approximation and ML Estimate in Angiographic Images

  • Om, Kyong-Sik;Chung, Jae-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.9-14
    • /
    • 1996
  • The goal of this research is to provide a practical algorithm for outlining the left ventricular cavity in digital subtraction angiography. The proposed algorithm is based on the elliptic approximation and ML (Maximum Likelihood) estimate, and it produces a good results regarding execution time, robustness against noise, accuracy, and range of position of ROI (Regions Of Interest).

  • PDF

Design, Fabrication, Static Test and Uncertainty Analysis of a Resonant Microaccelerometer Using Laterally-driven Electrostatic Microactuator (수평구동형 정전 액추에이터를 이용한 금속형 공진가속도계의 설계, 제작, 정적시험 및 오차분석)

  • Seo, Yeong-Ho;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.520-528
    • /
    • 2001
  • This paper investigates a resonant microaccelerometer that measures acceleration using a built-in micromechanical resonator, whose resonant frequency is changed by the acceleration-induced axial force. A set of design equations for the resonant microaccelerometer has been developed, including analytic formulae for resonant frequency, sensitivity, nonlinearity and maximum stress. On this basis, the sizes of the accelerometer are designed for the sensitivity of 10$^3$Hz/g in the detection range of 5g, while satisfying the conditions for the maximum nonlinearity of 5%, the minimum shock endurance of 100g and the size constraints placed by microfabrication process. A set of the resonant accelerometers has been fabricated by the combined use of bulk-micromachining and surface-micromachining techniques. From a static test of the cantilever beam resonant accelerometer, a frequency shift of 860Hz has been measured for the proof-mass deflection of 4.3${\pm}$0.5$\mu\textrm{m}$; thereby resulting in the detection sensitivity of 1.10${\times}$10$^3$Hz/g. Uncertainty analysis of the resonant frequency output has been performed to identify important issues involved in the design, fabrication and testing of the resonant accelerometer.