• Title/Summary/Keyword: Maximum delivery pressure

Search Result 29, Processing Time 0.022 seconds

Study on a Magnet-Coupleed Hydraulic Direct Relief Valve (자석을 이용한 유압직동형 릴리이프 밸브에 관한 연구)

  • ;;Lee, Chung-Oh
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.2
    • /
    • pp.65-72
    • /
    • 1977
  • Major problems in the design and use of refief valve are (a) chattering because of instability, (b) excessive pressure differential which makes the valves crack far below maximum pressure diminishing useful flow in the system. In this study, A magnet-coupled relief valve is investigated theoretically and experimentally in order to improve the performance of a conventional direct type reliefvalve. A theory is developed to predict the performance, response, and stability of the magnet-coupled valve taking into account the delivery line response. In the experiment, a typical magnet-coupled relief valve is designed on the basis of the analytical results; the discharge rates are measured varying the supply pressure, and both the pressure-time curves and valve displacament-time curves are recorded providing the supply pressures greater than the setting pressure. The measured override characteristic curves are then compared with those of conventional pilot type and direct type releif valves. It is showm that the excessive pressure differential of a magnet-coupled relief valve becomes less than that of a conventional direct type valve. It is also shown that the most important chatacteristic of a magnet-coupled relief valve is to eliminate valve chattering due to instability regardless of the magnitude of setting pressures and discharge rates, which suggests wide applications of the idea of the use of a magnet in the design of hydraulic valves.

Design and Fabrication of PZT Disc Actuated Micro Pump for Bio-Applications (II): Optimal Design & Fabrication of Embedding-type PZT Module (바이오용 압전디스크방식 마이크로 펌프 설계 및 제작 (II) -임베드방식의 압전모듈의 최적설계 및 제작-)

  • Kim, Hyung-Jin;Chang, In-Bae;Seo, Young-Ho;Kim, Byeong-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.362-367
    • /
    • 2012
  • Though a micro pump is a crucial element in miniaturized bio-fluidic systems or drug delivery systems, most of the conventional micro pumps still have some limitations to miniaturize their controller system and to obtain the sufficient back pressure which can rise over the inner pressure of human body or experimental animals. In this paper, to overcome these limitation, a new PZT disc and its controller were designed and fabricated to get the sufficient flowrate and the back pressure with guaranteeing embeddability of the controller into pumping body. The amplitudes of the disc deflections were as large as 40 ${\mu}m$ at 200 V - 100 Hz condition. As results of experiments, the flow rate and the back pressure increase when the frequency increases. The obtainable maximum flow rate and back pressure are 5.2 ml/min at 95 Hz and 13.14 kPa at 90 Hz respectively.

A Study on Feed Rate Characteristics of Motor-driven Cylinder Lubricator by the Electronically Controlled Quill System Equipped with an Accumulating Distributor in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관에 있어서 축압분배기 부착 전자제어식 퀼 시스템 모터구동 실린더 주유기의 송출유량 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Bae, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.91-98
    • /
    • 2011
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke diesel engine is of great economic importance. A motor-driven cylinder lubricator for Sulzer RT-flex large two-stroke diesel engines developed by authors is in need of mounting a quill system to lubricate cylinder parts for smoother operation. In order to apply the common-rail lubricating system to the developed cylinder lubricator as the second research stage, the quill system with a progressively quantitative distributor is improved in the electronically controlled quill system with an accumulating distributor. In this study, the effects of lubricator motor speed, plunger stroke and cylinder back pressure on oil feed rate, maximum discharge and delivery pressures are experimentally investigated by using the electronically controlled quill system with an accumulating distributor in the developed cylinder lubricator. It is found that the oil feed rate of the electronically controlled quill system with an accumulating distributor is larger than that of the quill system with a progressively quantitative distributor because of the increase of delivery speed and volume by changing the location of accumulator in the same experimental condition.

Effects of an Incontinence Prevention Program on Postpartum Women (산욕부에게 적용한 요실금 예방 프로그램의 효과)

  • Jeong, Nam-Ok
    • Women's Health Nursing
    • /
    • v.15 no.3
    • /
    • pp.177-185
    • /
    • 2009
  • Purpose: This study was done to examine the effects of an incontinence prevention program on postpartum women. Methods: The study design was a nonequivalent control pretest-posttest design. The subjects were 49 postpartum women with a normal vaginal delivery, 25 in the experimental group and 24 in the control group. Data was collected from lune 1. 2007 to April 30. 2008 at a postpartum women's care center located in Jeonju, Korea. For the experimental treatment, an incontinence prevention program was carried out for 24 weeks. Measures included maximum pressure of pelvic floor muscle contraction and duration of pelvic floor muscle contraction at pre-treatment, 5 weeks postpartum and 24 weeks postpartum. Data was analyzed by Repeated ANOVA using the SPSS/WIN 14.0 program. Results: The mean maximum pressure of pelvic floor muscle contraction (F = 8.95, p < .001) and mean duration of pelvic floor muscle contraction (F = 22.01, p < .001) were significantly different between the groups, and significantly increased as time passed. Conclusion: Practice of an incontinence prevention program is considered an effective intervention for the results of fewer urinary incontinence symptoms in postpartum women.

  • PDF

Stress and strain behavior investigation on a scale model geotextile tube for Saemangeum dike project

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jo, Sung-Kyeong;Jamin, Jay C.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.309-325
    • /
    • 2014
  • Geotextile tubes are basically a huge sack filled with sand or dredged soil. Geotextile tubes are made of permeable woven or non-woven synthetic fibers (i.e., polyester or PET and polypropylene or PP). The geotextile tubes' performances in strength, dewatering, retaining solid particles and stacked stability have been studied extensively in the past. However, only little research has been done in the observation of the deformation behavior of geotextile tubes. In this paper, a large-scale apparatus for geotextile tube experiment is introduced. The apparatus is equipped with a slurry mixing station, pumping and delivery station, an observation station and a data station. For this study the large-scale apparatus was utilized in the studies regarding the stresses on the geotextile and the deformation behavior of the geotextile tube. Model tests were conducted using a custom-made woven geotextile tubes. Load cells placed at the inner belly of the geotextile tube to monitor the total soil pressure. Strain gauges were also placed on the outer skin of the tube to measure the geotextile strain. The pressure and strain sensors are attached to a data logger that sends the collected data to a desktop computer. The experiment results showed that the maximum geotextile strain occurs at the sides of the tube and the soil pressure distribution varies at each geotextile tube section.

A Study for Regulating Flow Fluctuation and Preventing Backflow of Peristaltic Pump (연동펌프의 유량맥동 조절과 역류현상을 방지하는 장치에 대한 연구)

  • Jeong, Yoo-seok;Lee, Cheol-Soo;Lee, Tae-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.28-34
    • /
    • 2016
  • Though a peristaltic pump is a crucial element in miniaturized drug delivery systems, it has some intrinsic disadvantages such as backflow and flow fluctuation. To overcome these limitation, we have developed valve-less peristaltic pump system including orifice and stagnation chamber. we measured flow rate to investigate the performance of rotary peristaltic pump with three rollers and an elastomeric tube pumping a viscous fluid. The flow fluctuations and the backflow happen as a result from the disengagement of the contact interaction between the rollers and the tubes. Stagnation chamber installed in front of orifice plate was composed of rubber tube and gas chamber. By changing orifice hole diameter with stagnation chamber flow rate and pressure in the tube was regulated. The obtained maximum reduction ratio of flow fluctuation is 96.79%.

A Study on the Performance Characteristics of the Sirocco Fan in a Range Hood (레인지 후드용 시로코 홴 성능 특성에 관한 연구)

  • Park, Sang-Tae;Choi, Young-Seok;Park, Moon-Soo;Kim, Cheol-Ho;Kwon, Oh-Myoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.9-15
    • /
    • 2005
  • This paper presents an experimental and numerical study on the overall performance and local flow characteristics of sirocco fan in a range hood. Measurement of overall performance for sirocco fans were conducted based on AMCA standard 210. The effects of flow blockages due to the motor inside the fan on the fan performance were investigated by experimentally and numerically and the results were compared with each other. The numerical and experimental results show the inlet flow blockage reduces the performance (ie. fan static pressure, design flow rate, maximum efficiency and free delivery flow rate) of fan. It is found that the blockage makes the flow field highly non-uniform through the blade and cause the efficiency decrement.

The Analysis on Exergy Loss and its Reduction Methods in Steam Desuperheating and Depressurizing Process (증기의 감온·감압과정에서의 엑서지 손실 및 저감방안 분석)

  • Yi, Joong Yong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • The present paper presented and applied an exergy analysis method to evaluate the magnitudes and the locations of exergy losses in the conventional desuperheating and depressurizing process of high pressure and temperature steam delivery system. In addition, for the reduction of exergy losses occurred in conventional process, the present study proposed new alternative processes in which the pressure reducing valve and the desuperheater of conventional process are substituted with steam turbine and heat exchanger, and their effects on exergy loss reduction and exergy efficiency improvement are theoretically investigated and compared. From the present analysis results, the total exergy loss caused in conventional desuperheating and depressurizing process accounted for 66.5% of exergy input and 85% of the total exergy loss was due to the mixing between steam and cold water(e.g desuperheating). However, it was shown from the present analysis results that the present alternative processes can additionally reduce exergy loss by maximum 92.7% of the total exergy loss in conventional process, and can also produce additional and useful energy, the electricity of 220.6 kWh and the heat of 54.3 MJ/hr.

Intranasal administration of dexmedetomidine (DEX) as a premedication for pediatric patients undergoing general anesthesia for dental treatment

  • Lee, Yookyung;Kim, Jongsoo;Kim, Seungoh;Kim, Jongbin
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.1
    • /
    • pp.25-29
    • /
    • 2016
  • Background: The most important reason for pre-operative administration of medication is to reduce anxiety. Alleviation of fear and anxiety about surgery enables patients to remain comfortable during treatment. Dexmedetomidine (DEX) is a fast-acting drug that is used as a premedication in different circumstances because it has sedative and anti-anxiolytic effects, and stable hemodynamics. It also has the advantage of intranasal administration. The aim of this study was to investigate the effects and hemodynamic stability of DEX by retrospectively analyzing cases in which DEX was administered nasally as a premedication. Methods: Ten patients treated at Dankook University Dental Hospital, recruited between February and April 2015, received intranasal delivery of $2{\mu}g/kg$ DEX, 30 minutes prior to general anesthesia. Anesthesia records of anxiety, blood pressure, respiration, pulse, estimated arterial oxygen saturation ($SpO_2$), and partial pressure, or maximum concentration, of carbon dioxide ($ETCO_2$) were analyzed. Results: Administration of DEX prior to a general anesthetic effectively relieved anxiety. Respiratory depression, the most severe adverse effect of other sedatives, was not observed. Hemodynamic stability under general anesthesia was maintained during treatment and a reduction in emergence delirium was observed upon completion of treatment. Conclusions: Premedication administration of DEX is safe for pediatric patients undergoing dental treatment under general anesthesia.

A study on the peristaltic waveform of valveless PZT pump using disk type multi PZTs (다수 개 디스크 PZT 를 이용한 밸브리스 압전펌프의 연동구동 파형에 관한 연구)

  • Ham Y.B.;Park J.H.;Yun D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1824-1827
    • /
    • 2005
  • For application to micro fluid control systems such as ${\mu}TAS$ (Micro Total Analysis Systems) and DDS (Drug Delivery Systems), it is very significant to handle precise and minute flow rates with low pressure pulsation. In this study, a novel valveless piezoelectric pump using peristaltic motion with three disk type PZT actuators is presented. The newly devised pump with an effective size of $70mm{\times}60mm{\times}55mm$ has three actuator layers connected in series from inlet to outlet. The PZT actuator has a maximum displacement of 240 ${\mu}m$ and a maximum force of 1.6 N. When the driving voltage for PZT actuators is sequentially applied with a certain phase shift, the pumping is performed by peristaltic motion of liquid volume. The working fluid is shut off without the driving voltage. Three methods for sequential driving are proposed and experimentally investigated. First and second methods utilize an intermittent sinusoidal waveform with phase shift of $90{\circ}\;and\;120^{\circ}$, respectively. Third method uses a rectangular waveform with phase shift of $90^{\circ}$. A controller with multi-phase shifter is designed and fabricated. Then, frequency and voltage-flow rate characteristics and load pressure-flow rate characteristics are experimentally investigated to verify the validity of the developed pump.

  • PDF