• Title/Summary/Keyword: Maximum curvature

Search Result 282, Processing Time 0.027 seconds

Diagnostics for Regression with Finite-Order Autoregressive Disturbances

  • Lee, Young-Hoon;Jeong, Dong-Bin;Kim, Soon-Kwi
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.237-250
    • /
    • 2002
  • Motivated by Cook's (1986) assessment of local influence by investigating the curvature of a surface associated with the overall discrepancy measure, this paper extends this idea to the linear regression model with AR(p) disturbances. Diagnostic for the linear regression models with AR(p) disturbances are discussed when simultaneous perturbations of the response vector are allowed. For the derived criterion, numerical studies demonstrate routine application of this work.

COMPLETE SPACELIKE HYPERSURFACES WITH CMC IN LORENTZ EINSTEIN MANIFOLDS

  • Liu, Jiancheng;Xie, Xun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1053-1068
    • /
    • 2021
  • We investigate the spacelike hypersurface Mn with constant mean curvature (CMC) in a Lorentz Einstein manifold Ln+11, which is supposed to obey some appropriate curvature constraints. Applying a suitable Simons type formula jointly with the well known generalized maximum principle of Omori-Yau, we obtain some rigidity classification theorems and pinching theorems of hypersurfaces.

GRADIENT ESTIMATES OF A NONLINEAR ELLIPTIC EQUATION FOR THE V -LAPLACIAN

  • Zeng, Fanqi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.853-865
    • /
    • 2019
  • In this paper, we consider gradient estimates for positive solutions to the following nonlinear elliptic equation on a complete Riemannian manifold: $${\Delta}_Vu+cu^{\alpha}=0$$, where c, ${\alpha}$ are two real constants and $c{\neq}0$. By applying Bochner formula and the maximum principle, we obtain local gradient estimates for positive solutions of the above equation on complete Riemannian manifolds with Bakry-${\acute{E}}mery$ Ricci curvature bounded from below, which generalize some results of [8].

Effect of confinement on flexural ductility design of concrete beams

  • Chen, X.C.;Bai, Z.Z.;Au, F.T.K.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.129-143
    • /
    • 2017
  • Seismic design of reinforced concrete (RC) structures requires a certain minimum level of flexural ductility. For example, Eurocode EN1998-1 directly specifies a minimum flexural ductility for RC beams, while Chinese code GB50011 limits the equivalent rectangular stress block depth ratio at peak resisting moment to achieve a certain nominal minimum flexural ductility indirectly. Although confinement is effective in improving the ductility of RC beams, most design codes do not provide any guidelines due to the lack of a suitable theory. In this study, the confinement for desirable flexural ductility performance of both normal- and high-strength concrete beams is evaluated based on a rigorous full-range moment-curvature analysis. An effective strategy is proposed for flexural ductility design of RC beams taking into account confinement. The key parameters considered include the maximum difference of tension and compression reinforcement ratios, and maximum neutral axis depth ratio at peak resisting moment. Empirical formulae and tables are then developed to provide guidelines accordingly.

A Planar Geodesic Constrained On the Maximum Curvature and with Prescribed Initial and Terminal Directions: An Optimal Control Approach

  • Lim, Jong-In;Chung, Ee-Suk;Ree, Sang-Bok;Oh, Hyung-Sik;Chung, Sung-Jin;Kang, Suk-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.105-114
    • /
    • 1993
  • In this article, a planar geodesic (2-dimensional minimum length curve between two points) on which the maximum curvature is constrained and with prescribed initial and terminal directions is studied. A generic problem is formulated by the minimum-time optimal control problem in free terminal time. It is shown that the optimal path ($G^2$) may contain a singular arc or not and that the general types of $G^2$ can he classified into the 3 classes of control sequences. Finally, the explicit form of $G^2$ is derived geometrically as well as algebraically form the main theorem of this article.

  • PDF

Pattern Development using the Curvature Plot of 3D Human Scan Data (3차원 인체의 곡률분포를 이용한 패턴 전개)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.9
    • /
    • pp.1478-1486
    • /
    • 2008
  • The human body composed of concave and convex curvatures, and the current 3D scanning technology which involves inherent measurement errors make it difficult to extract distinct curvature plot directly. In this study, a method of extracting the clear curvature plot and its application to the cycling pants design were proposed. We have developed the ergonomic pattern from the 3D human body reflecting cycling posture. For the ergonomic design line on the 3D human body, the 3D information on the lower part of four male bodies with flexed posture was analyzed. The 3D scan data of four subjects were obtained using Cyberware. As results, the iteration of the tessellated shell was executed 100 times to obtain optimized curvature plots of the muscles on the body surface, and the boundaries of the curvature plots were applied to the design lines. Maximum(Max-pattern) and mean curvature plots(Mean-pattern) were adopted in the design line of the cycling pants, and performance of those lines was compared with that of conventional princess line(Con-pattern). The average error of total area and length in the 2D pattern developed from the 3D flexed body surface in this study were very minimal($4.58cm^2$(0.19%) and 0.15mm(0.46%)), which was within the range of tolerable limits in clothing production. The pattern obtained from the flexed body reflecting cycling posture already included the contraction and extension of the cycling skin, so that the extra ease for movement and good fit was not need to be considered.

A MAXIMUM PRINCIPLE FOR COMPLETE HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLD

  • Zhang, Shicheng
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.141-153
    • /
    • 2014
  • In this article, we apply the weak maximum principle in order to obtain a suitable characterization of the complete linearWeingarten hypersurfaces immersed in locally symmetric Riemannian manifold $N^{n+1}$. Under the assumption that the mean curvature attains its maximum and supposing an appropriated restriction on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or hypersurface is an isoparametric hypersurface with two distinct principal curvatures one of which is simple.

LOCAL INFLUENCE ON THE GOODNESS-OF-FIT TEST STATISTIC IN MAXIMUM LIKELIHOOD FACTOR ANALYSIS

  • Jung, Kang-Mo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.489-498
    • /
    • 1998
  • The influence of observations the on the goodness-of-fit test in maximum likelihood factor analysis is investigated by using the local influence method. under an appropriate perturbation the test statistic forms a surface. One of main diagnostics is the maximum slope of the perturbed surface the other is the direction vector cor-responding to the curvature. These influence measures provide the information about jointly influence measures provide the information about jointly influential observations as well as individ-ually influential observations.

An Upper Bound Analysis of the Shapes of the Dead Metal Zone and the Curving Velocity Distribution in Eccentric Plane Dies Extrusion (평다이를 사용한 편심 압출가공에서의 비유동 영역의 형상과 굽힘 속도 분포에 관한 상계해석)

  • Kim, Jin-Hoon;Jin, In-Tai
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.177-185
    • /
    • 1998
  • The kinematically admissible veolcity field is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric plane dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric lane dies is caused by the eccentricity of plane dies. The axial velocity distribution in the plane dies is divided in to the uniform velocity and the deviated velocity. The deviated velocity is linearly changed with the distance from the center of cross-section of the workpiece. The results show that the curvature of products and the shapes of the dead metal one are determined by the minimization of the plastic work and that the curvature of the extruded products increase with the eccentricity.

  • PDF