• Title/Summary/Keyword: Maximum curvature

Search Result 282, Processing Time 0.031 seconds

Correction method for the Variation of the Image Plane Generated by Various Symmetric Error Factors of Zoom Lenses of Digital Still Cameras and Estimation of Defect Rate Due to the Correction (디지털 카메라용 줌렌즈에서 대칭성 오차요인에 의한 상면 변화의 보정과 이에 따른 불량률 예측)

  • Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin;Lee, Hyuck-Ki;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.420-429
    • /
    • 2006
  • In the zoom lens of digital still cameras with the variation of the image plane generated by various symmetric error factors such as curvature, thickness and refractive index error of each lens surface about the optic axis, we induce a theoretical condition to fix constantly the image plane by translating the compensator group of the zoom lens by using the Gaussian bracket. We confirm the validity of this condition by using three examples of general zoom lens types with 3, 4, and 5 groups, respectively. When these error factors are randomly changed within the range of tolerance according to the Monte Carlo method, we verify that the distributions of the degree of moving of the compensator are normal distributions at three zoom lens types. From capability analysis using these results, we theoretically propose the method estimating the standard deviation, that is, sigma-level, as a function of the maximum movement of the compensator.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

Effect on Flow Distortion of S-Duct by Boundary Layer Suction (경계층 흡입이 S-Duct의 유동 왜곡에 미치는 영향성 연구)

  • Baeg, Seungyong;Lee, Jihyeong;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • An intake of Aircraft becomes S-shaped geometry due to spatial limitation or procuring survivability. But curvature of the S-shaped geometry makes secondary flow or flow separation which is the cause of non-uniform pressure distribution. In this study, boundary layer suction is applied to RAE M 2129 S-Duct by attaching sub duct. Design variable is suction location and angle. A mass flow rate drawn out by suction at the sub duct outlet is constant over every model. A grid dependency test was conducted to verify validity of computation. The comparison among the CFD (Computation Fluid Dynamics), ARA experimental result, and ARA computation result of non-dimensional pressure distribution on the Port side and Starboard Side confirmed the validity of CFD. In this study, Distortion Coefficient was used for evaluating aerodynamic performance of S-Duct. The analysis, which was about flow separation, vortex, mass flow rate distribution, and pressure distribution were also investigated. Maximum 26.14% reduction in Distortion Coefficient was verified.

Dubins Path Generation and Tracking of UAVs With Angular Velocity Constraints (각속도 제한을 고려한 무인기의 Dubins 경로 생성 및 추적)

  • Yang, You-young;Jang, Seok-ho;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • In this paper, we propose a path generation and tracking algorithm of an unmanned air vehicle in a two-dimensional plane given the initial and final points. The path generation algorithm using the Dubins curve proposed in this work has the advantage that it can be applied in real time to an unmanned air vehicle. The path tracking algorithm is an algorithm similar to the line-of-sight induction algorithm. In order to efficiently control the direction angle, a gain related to the look ahead distance concept is introduced. Most of UAVs have the limited maximum curvature due to the structural constraints. A numerical simulation is conducted to follow the path generated by the sliding mode controller considering the angular velocity limit. The path generation and tracking performance is verified by comparing the suggested controller with conventional control techniques.

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.

Seismic Fragility Analysis of RC Bridge Piers in Terms of Seismic Ductility (철근콘크리트 교각의 연성 능력에 따른 지진취약도)

  • Chung, Young-Soo;Park, Chang-Young;Park, Ji-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.91-102
    • /
    • 2007
  • Through lessons in recent earthquakes, the bridge engineering community recognizes the need for new seismic design methodologies based on the inelastic structural performance of RC bridge structures. This study represents results of performance-based fragility analysis of reinforced concrete (RC) bridge. Monte carlo simulation is performed to study nonlinear dynamic responses of RC bridge. Two-parameter log-normal distribution function is used to represent the fragility curves. These two-parameters, referred to as fragility parameters, are estimated by the traditional maximum likelihood procedure, which is treated each event of RC bridge pier damage as a realization of Bernoulli experiment. In order to formulate the fragility curves, five different damage states are described by two practical factors: the displacement and curvature ductility, which are mostly influencing on the seismic behavior of RC bridge piers. Five damage states are quantitatively assessed in terms of these seismic ductilities on the basis of numerous experimental results of RC bridge piers. Thereby, the performance-based fragility curves of RC bridge pier are provided in this paper. This approach can be used in constructing the fragility curves of various bridge structures and be applied to construct the seismic hazard map.

Study on Applicability of River Revetment Design for consideration of Velocity Variation due to Meandering and Scour Effect (만곡 및 세굴 영향에 의한 유속변화를 고려한 호안설계방법 적용성 검토)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.17-25
    • /
    • 2016
  • Revetments help protect levee slopes from erosion. If the design of the revetment is not appropriate, the levee may collapse as a result of scouring due to the strong flow velocity and tractive force. Therefore, when designing a revetment, it is very important to calculate the representative velocity. However, the average velocity and depth calculated by 1-D varied flow analysis are generally applied to the design, which do not reflect the increase in velocity caused by the free and force vortex. Therefore, it is necessary to correct the representative velocity in order to ensure the stability of the revetment in a meandering channel. In this study, the applicability of the method of calculating the representative velocity considering the curve and scour was studied (by comparing it with) the average and maximum velocities determined by numerical simulation. The representative velocity corrected for the effect of the curve and scour and the maximum velocity calculated by the numerical simulation were found to match quite well. In addition, the riprap size of the gabion in the meandering and straight channels were compared by applying them to the conventional design formulas. In the future, it is necessary to perform additional numerical simulations for various rivers with different characteristics, in order to propose a method of designing a suitable revetment for Korean characteristics. At this time, the results of this study are expected to be able to be used as basic data.

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

Construction of Correlation between Basic Soil Properties and Deformation Modulus of Trackbed Soils Based on Laboratory and Field Mechanical Tests (역학적 실내외 시험에 의한 철도궤도 상부노반용 흙재료의 기본물성과 변형계수 상관성 평가)

  • Park, Jae Beom;Choi, Chan Yong;Ji, Sang Hyun;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • The soils used as trackbed in Korea are selected using USCS utilizing basic soil properties such as Grain Size Distribution(GSD), % passing of #200 sieve ($P_{200}$), % passing of #4 sieve ($P_4$), Coefficient of uniformity ($C_u$), and Coefficient of curvature ($C_c$). Degree of compaction of the soils adapted in the code by KR should be evaluated by maximum dry density (${\gamma}_{d-max}$) and deformation modulus $E_{v2}$. The most important influencing factor that is critical to stability and deformation of the compacted soils used as trackbed is stiffness. Thus, it is necessary to construct a correlation between the modulus and the basic soil properties of trackbed soil in order to redefine a new soil classification system adaptable only to railway construction. To construct the relationship, basic soil test data is collected as a database, including GSD, maximum dry unit weight (${\gamma}_{d-max}$), OMC, $P_{200}$, $P_4$, $C_u$, $C_c$, etc.; deformation modulus $E_{v2}$ and $E_{vd}$ are obtained independently by performing a Repeated Plated Bearing Test (RPBT) and Light Weight Deflectometer Test (LWDT) for ten different railway construction sites. A linear regression analysis is performed using SPSS to obtain the relationship between the basic soil properties and the deformation modulus $E_{v2}$ and $E_v$. Based on the constructed relationship and the various obtained mechanical test data, a new soil classification system will be proposed later as a guideline for the design and construction of trackbed foundation in Korea.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.