• Title/Summary/Keyword: Maximum curvature

Search Result 282, Processing Time 0.025 seconds

A Study on the Plane Turbulent Offset Jet (평면 난류 오프셋 제트에 관한 연구)

  • 유정열;강신형;채승기;좌성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.357-366
    • /
    • 1986
  • The flow characteristics of two-dimensional turbulent offset jet which is discharged parallel to a solid wall has been studied experimentally and numerically. In the experiment, 3-hole pitot tube and 2 channel constant temperature hot-wire anemometer are used to measure local mean velocity, turbulence intensity and Reynolds stress while scannivalve is used to measure the wall pressure distribution. It is confirmed experimentally that local mean velocity is closely related to wall pressure distribution. It is also verified that for large Reynolds numbers and fixed step height there exists a similarity in the distribution of wall pressure coefficient. The maximum values of turbulence intensity occur in the top and bottom mixing layers and the magnitude of Reynolds stress becomes large in the lower mixing layer than in the top mixing layer due to the effect of streamline curvature and entrainment. In the numerical analysis, standard k-.epsilon. model based on eddy viscosity model and Leschziner and Rodi model based on algebraic stress model are adopted. The numerical analyses predict shorter reattachment lengths than the experiment, and this difference is judged to be due mainly to the problem of turbulence model constants and numerical algorithm. This also causes the inconsistency between the two results for other turbulence quantities in the recirculation region and impingement region, which constitutes a subject of a continued future study.

Precise Terrain Torrection for Gravity Measurement Considering the Earth's Curvature (지구 곡률을 고려한 중력의 정밀 지형보정)

  • Choi, Kwang-Sun;Lee, Young-Cheol;Lim, Mu-Taek
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.825-837
    • /
    • 2007
  • The researchers compiled two sets of digital terrain data released by NORI (National Oceanographic Research Institute, Korea) and NIMA (National Imagery and Mapping Agency, USA) respectively and analyzed a new set of $3"{\times}3"$ gridded terrain data in order to calculate terrain correction value in gravity in and around the Korean Peninsula. Using this new set of terrain data, the researchers developed an effective algorithm to calculate precise terrain correction value in gravity considering Earth's curvature and coded a fortran program to evaluate terrain correction value covering the surface of which the radius reaches up to 166.735 km. The researchers also calculated terrain correction value over the southern part of Korea. According to the statistics of terrain correction value calculated in and around the Korean Peninsula up to 166.735 km of surface radius, the maximum value soars to 56.508 mGal and the mean value is 4.539 mGal.

COMPUTATIONAL INVESTIGATION OF NOZZLE FLOWFIELD IN A MICRO TURBOJET ENGINE AND ITS SCALING CHARACTERISTICS (마이크로 터보제트 엔진 노즐 유동장에 관한 CFD 전산해석 및 스케일링 특성 연구)

  • Lee, H.J.;An, C.H.;Myong, R.S.;Choi, S.M.;Kim, W.C.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Thermal flowfield of a micro turbojet engine was computationally investigated for exhaust nozzles with different aspect ratio and curvature. Special attention was paid to maximum and average temperature of the nozzle surface and the exhaust nozzle plume. The IR signatures of the micro turbojet engine nozzle were then calculated through the narrow-band model based on thermal flowfield data obtained through CFD analysis. Finally, in order to check the similarity of thermal flowfields and IR signature of the sub-scale micro turbojet engine model and the full-scale UCAV propulsion system, several non-dimensional parameters associated with temperature and optical property of plume were introduced. It was shown that, in spite of some differences in actual values of non-dimensional parameters, the scaling characteristics on spectral feature of IR signature and effects of aspect ratio and curvature of nozzle configuration remain similar in sub-scale and full-scale cases.

Improved method of lateral offset calculation for optical waveguide (광도파로의 곡률 반경에 따른 모드특성과 Lateral Offset 변화)

  • 박순룡;김우택;라상호;오범환
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.408-412
    • /
    • 1998
  • As the radius of curvature of curved optical waveguide gets smaller, the loss increases at the junction of linear-curved waveguide by the cross sectional mode mismatch. The concept of lateral offset has been used widely to minimize it, and simple method of maximum matching has been efficient for most cases of silica waveguide with low optical confinement and large radius of curvature. Here, we analyzed that the propagation mode characteristics of the lateral offset and propagation mode characteristics of general case with effective index method and Airy function solution. As the normalized frequency varies, mode characteristics changes near the boundary of 1/V=0.7 and the simple matching of gaussian profile might give -35% of error at most. We proposed improved method with a new correction factor to improve the mode mismatch problem of conventional methods for general cases, and showed the convenience and feasibility of this method for the calculation of the lateral offset.

  • PDF

A femtosecond Cr:LiSAF laser pumped by semiconductor lasers (반도체 레이저 여기 펨토초 Cr:LiSAF 레이저)

  • 박종대
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.360-364
    • /
    • 2000
  • We demonstrate self-starting passIve mode locking of a Cr:LiSAF laser, using a SCIDlconduclor Saturable Absorber Mirror (SESAM), Two high-power red semiconductor lasers (Coherent S-67-500C-100-H) of wavelength 667 nm and maximum power of 500 mW were used as pump lasers, The cavity has 10 cm radius-ai-curvature folding minors, two SF 10 prisms, a 99% reflectivity output coupler and a SESAM at dIe focus of a 10 cm radIus-at-curvature mirror. We used the laser crystal in BrewsterBrewster shape with 1 5% $Cr^{+3}$ ion concentration and the length of 6 mm, An X-shaped resonator was used to compensate the astigmatism induced by tile crystal. The structure of the SESAM cOllSists of 30 pmr of $AlAs/Al_{0.15}Ga_{0.85}As$ layer, wi1l1 a 10 nm GaAs quantum well situated in the topmost layer Output spectra were centeled at 833 nm, with 4 nm spectral bandwidth and pulse width was measured to be 220 fs, Output power of 3 mW is obtained at a pump power of 800 mW. 00 mW.

  • PDF

A Study of the Effect of Operating Time of a Rocket Motor on the Convective Heat Transfer Coefficient of Nozzle (로켓 모터의 작동시간이 노즐 열전달 계수에 미치는 영향에 관한 연구)

  • Kim, Jinsoo;Kim, Kyungsik;Cho, Seunghwan;Kwon, Youngdoo;Kwon, Soonbum
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.24-30
    • /
    • 2013
  • To guarantee the exact control of missile warhead, it is inevitable to ensure the stabilities in the view points of structural and fluid/thermo dynamics of the rocket motor. Specially, despite of shortness in operating time of the rocket motor which is initial turning type of missile, it occurs frequently some problems of ablation at the neighborhood of the nozzle throat, with the result that the system itself gets to failure. In these connections, in the present study, the effect of the operating time of a rocket motor on the coefficient of convective heat transfer at the nozzle wall is investigated by numerical analysis. As a result, it is turned out that the heat transfer coefficient is largest at the just ahead of nozzle throat and decreases with the increase of operating time of the rocket motor. Furthermore, we found that the radius of curvature of throat becomes smaller, the maximum coefficient of convective heat transfer becomes larger.

Rapid cooling of injection mold for high-curvature parts using CO2 cooling module (CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각)

  • Se-Ho Lee;Ho-Sang Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

Aeronautical to Ground Channel Modeling for Common Data Link (공용데이터링크를 위한 공대지 채널 모델링)

  • Park, Hongseok;Shim, Jae-Nam;Kim, Donghyun;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1876-1883
    • /
    • 2016
  • The new channel model for high data rate common data link(CDL) is proposed. The Two-ray channel, which is composed of the reflected signals on the front ground of the receiver, is considered in this paper. This channel arises due to the curvature of the earth when the altitude of the transmitter is tens of kilometers and distance between the transmitter and the receiver is hundreds of kilometers. The Two-ray channel is modeled by estimating the maximum delay profile and the power delay profile, depending on the transmitting and receiving beamforming angle and the radiation pattern of antenna. The power delay profile has a larger effect on the bit error rate(BER) over signal to noise ratio(SNR) than the maximum delay profile, because the distance range is too long in the proposed channel model.

Abnormal Behavior of Ordinary Heterotrophic Organism Active Biomass at Different Substrate/Microorganisms Ratios in Batch Test (회분식 실험 Substrate/Microorganisms 비에 따른 종속영양미생물의 특이거동 연구)

  • Lee, Byung-Joon;Wentzel, M.C.;Ekama, G.A.;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Batch test methods have developed for a long time to measure kinetic and stoichiometric parameters which are required to perform steady state design and mathematical modelling of activated sludge processes. However, at various So/Xo ratios, abnormal behaviors of ordinary heterotrophic organism in batch tests have been reported in many researches. Thus, in this research, abnormal behaviors of heterotrophs in batch tests were investigated at various So/Xo conditions by measuring and interpreting oxygen utilization rate. As So/Xo ratio increased, the calculated values of maximum specific growth rates, ${\mu}_{H,max}$ and $K_{MP,max}$, increased. However, at a certain point of So/Xo (around 10mgCOD/mgMLAVSS), ${\mu}_{H,max}$ and $K_{MP,max}$ values started to decrease. According to this observation, three prominent behaviours of heterotrophs were identified at various So/Xo conditions. (1) At low So/Xo region (below 5 mgCOD/mgMLAVSS), the oxygen utilization rate of heterotrophs in batch tests were almost stable and consequently yielded lower maximum specific growth rate. (2) At high So/Xo region (up to 5~10 mgCOD/mgMLAVSS), oxygen utilization rate incresed sharply with time and indicated more upward curvature than the predicted OUR with conventional activated sludge model, which consists of single hetetrotrophs group. Thus, in this region, competition model of two organisms, fast-grower and slow-grower, seemed to be appropriate. (3) At extremely high So/Xo region (over 10mgCOD/mgMLAVSS), significant oxygen utilization rate was still observed even after depletion of readily biodegradable COD. This might be caused by retarded utilization of intermediates which were generated by self inhibition mechanism in the process of RBCOD uptake.

Damage and deformation of new precast concrete shear wall with plastic damage relocation

  • Dayang Wang;Qihao Han;Shenchun Xu;Zhigang Zheng;Quantian Luo;Jihua Mao
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.385-403
    • /
    • 2023
  • To avoid premature damage to the connection joints of a conventional precast concrete shear wall, a new precast concrete shear wall system (NPSW) based on a plastic damage relocation design concept was proposed. Five specimens, including one monolithic cast-in-place concrete shear wall (MSW) as a reference and four NPSWs with different connection details (TNPSW, INPSW, HNPSW, and TNPSW-N), were designed and tested by lateral low-cyclic loading. To accurately assess the damage relocation effect and quantify the damage and deformation, digital image correlation (DIC) and conventional data acquisition methods were used in the experimental program. The concrete cracking development, crack area ratio, maximum residual crack width, curvature of the wall panel, lateral displacement, and deformed shapes of the specimens were investigated. The results showed that the plastic damage relocation design concept was effective; the initial cracking occurred at the bottom of the precast shear wall panel (middle section) of the proposed NPSWs. The test results indicated that the crack area ratio and the maximum residual crack width of the NPSWs were less than those of the MSW. The NPSWs were deformed continuously; significant distortions did not occur in their connection regions, demonstrating the merits of the proposed NPSWs. The curvatures of the middle sections of the NPSWs were lower than that of the MSW after a drift ratio of 0.5%. Among the NPSWs, HNPSW demonstrated the best performance, as its crack area ratio, concrete damage, and maximum residual crack width were the lowest.