• 제목/요약/키워드: Maximum Torque

검색결과 820건 처리시간 0.028초

유럽과 한국의 이륜차 엔진 성능 시험 규정에 대한 비교 연구 (A Comparison Study on the Engine Performance Test Regulation of Two-wheeled Vehicles between EU and Korea)

  • 이광구;용기중
    • 자동차안전학회지
    • /
    • 제8권3호
    • /
    • pp.22-27
    • /
    • 2016
  • As a preliminary research to provide amendment for the engine performance test regulation of two-wheeled vehicles, the engine performance data are investigated in terms of maximum torque, rated power, and engine speed of motorcycles on sales in Korean market. Based on the engine performance database officially published to consumers, some forecasted problems are discussed when the maximum torque and the rated power are measured under the present test standards. EU and Korea regulations on engine performance test are carefully compared in terms of the accuracy of measurement devices, test procedures including data acquisition method, and allowable range of rated power measurement. Complementary items are discussed to eliminate ambiguities in the present regulation and to construct rational regulation system.

전압 궤환 제어를 위한 약계자 영역에서의 벡터 제어 유도전동기의 최대 토오크 운전 (Voltage Control Strategy for Maximum Torque Operation of Field Oriented Induction Machine in the Field Weakening Region)

  • 김상훈;설승기
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1084-1092
    • /
    • 1994
  • An induction machine can be operated in the constant power region over an extended high speed range by means of field weakening. A conventional field weakening method is to set the flux reference inversely proportional to the rotor speed. With this method, however, the machines can't yield the maximum torque over the entire high speed range. In this paper, a new field weakening method for the field oriented induction machine drive by the voltage control strategy is presented. The proposed scheme ensures not only producting the maximum torque over the entire field weakening region but also the robust control independent on machine parameters. Also the smooth transition into the field weakening operation and fast dynamic response during transient operation can be obtained. Simulation and experimental results from a 3hp laboratory induction motor drive system are done to confirm the proposed control algorithm.

HEV용 영구자석 동기전동기의 상수변동 시 최대토크 운전 (Maximum Torque Operation of a PM Synchronous Motor for HEV under Parameter Variation)

  • 조관열
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5128-5134
    • /
    • 2011
  • 본 논문에서는 HEV용 영구자석 매립형 동기전동기의 단위전류 당 최대토크 운전을 위한 dq 전류 궤적에 대하여 고찰하였다. 전동기 상수로부터의 단위전류 당 최대토크 운전을 위한 dq 전류를 해석하고, 이를 바탕으로 영구자석의 자속 및 dq 인덕턴스 등의 전동기 상수가 변할 경우 단위전류 당 최대토크 운전점의 변화를 고찰하였다. 또한 단위전류 당 최대토크 제어를 위한 dq 전류의 궤적을 실험을 통하여 검증하였다.

동기형 릴럭턴스 전동기의 토크와 역률 최대화를 위한 회전자 설계 기법 (A Method to Design the Rotor of Synchronous Reluctance Motors for Maximum Torque and Power Factor)

  • 김원호
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.93-100
    • /
    • 2013
  • This paper propose a method to design the rotor of synchronous reluctance motors(SynRM) for maximum torque and power factor by using DOE(design of experiment) with the design variables which are parameters of barriers and segments. In this process, there are problems that require lots of simulation time and number of simulations when calculating the both torque and power factor using the finite element method in order to find load angle, core loss per speed. In order to improve this problem, we calculate only value of flux linkage by finite element method, and can decrease analysis and the number of analysis time by applying steady state expression of the power factor and torque. Finally, in order to verify the characteristics of optimal model, we make prototype motor and compare with the conventional SynRM. In this experiment, we use the DC current decay test for calculating d-and q-axis inductance.

부하토크외란관측기와 속도센서리스 벡터제어를 이용한 철도모의장치의 Anti-Slip 제어 (Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer and Speed Sensor-less Vector Control)

  • 이상집;권중동;김은기;조정민;전기영;이승환;오봉환;이훈구;김용주;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.891-894
    • /
    • 2004
  • This paper estimate coefficient of adhesion through speed sensor-less vector control and load torque disturbance observer used for maximum tractive force control. And also proposes anti-slip control algorithm, which controls torque force of motor in order to keep the estimated adhesion force in maximum adhesion by controlling PI torque with the differential value of estimated adhesion force coefficient.

  • PDF

단위전류당최대토크 제어기의 성능 비교를 통한 경부하에서 대안모델의 유도전동기 동특성 예측에 관한 연구 (Study on Predicting Induction Motor Characteristics of Alternate QD Model Under Light Loads by Comparing Performance of MTPA Control)

  • 권춘기;김동식
    • 전력전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.65-71
    • /
    • 2016
  • This study investigates a high-accuracy alternate QD model to estimate the characteristics of induction motor under light loads. To demonstrate the usefulness of the alternate QD model, a maximum torque per amp (MTPA) control based on the alternate model is shown to outperform MTPA control based on the standard QD model. The experimental study conducted in this work exhibits that the MTPA control based on the alternate QD model tracks torque commands between 20 Nm and 30 Nm with 5% error, whereas the MTPA control based on the standard QD model generates torques lower by over 23% compared with the aforementioned torque commands. This result indicates that the alternate QD model is a highly accurate model for induction motors under light loads.

On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter

  • Sim, Hyun-Woo;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.600-608
    • /
    • 2014
  • This paper presents estimation of d-axis and q-axis inductance of an interior permanent magnet synchronous motor (IPMSM) by using an extended Kalman filter (EKF). The EKF is widely used for control applications including the motor sensorless control and parameter estimation. The motor parameters can be changed by temperature and air-gap flux. In particular, the variation of the inductance affects torque characteristics like the maximum torque per ampere (MTPA) control. Therefore, by estimating the parameters, it is possible to improve the torque characteristics of the motor. The performance of the proposed estimator is verified by simulations and experimental results based on an 11kW PMSM drive system.

풍차형 초음파 전동기의 고정자 슬롯이 토크에 미치는 영향 (The Effect of Stator`s Slot on the Torque in the Windmill Type Ultrasonic Motor)

  • 김영균;김진수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.323-326
    • /
    • 1999
  • In this paper, a windmill type ultrasonic motor operated by single-Phase AC electric field was fabricated, and then torque characteristics were investigated. A metal-ceramic composite component was used as the stator\`s vibrator to generate ultrasonic vibrations. The windmill type ultrasonic motors has only three components; a stator element with two wind-mill shape slotted metal endcaps, a rotor and a bearing. In this parer we measured torque, when stator\`s slot was changed Iron 4, 6, 8. Brass metal was pressed with umbrella-type using metal molt then slot of 3 kind was manufactured. The maximum revolution speed was 388(rpm) in the case of a small ultrasonic motor of 11.35 mm diameter, 8 slot and 1.01 mm thickness. The maximum torque of 0.17 mNm was obtained at a speed of 131 rpm.

  • PDF

DEVELOPMENT OF PREDICTABLE STABILITY TEST FOR ASSESSMENT OF OPTIMUM LOADING TIME IN DENTAL IMPLANT

  • Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Kwon, Ji-Yong
    • 대한치과보철학회지
    • /
    • 제46권6호
    • /
    • pp.628-633
    • /
    • 2008
  • STATEMENT OF PROBLEM: The application of a simple, clinically applicable noninvasive test to assess implant stability are considered highly desirable. So far there is still a controversy about correlation of various tests and implant stability. PURPOSE: In order to assess implant stability, the development of a new method is critical. It's possible to assess implant stability by calculating energy and angular momentum during implant installation. The purpose of this study is to evaluate the correlation of energy and implant stability. MATERIAL AND METHODS: Twenty three implants were installed in two different types of pig bone. Type I bone was retrieved from the distal aspect of the rib, with more cortical bone. Type II bone came from a more proximal region with less cortical components and a higher content of bone marrow and spongeous trabeculae. Insertion torque, removal torque, ISQ values and angular momentum and energy were measured. Pearson Correlation test was done to analyze the relation between RFA, maximum insertion torque, mean insertion torque, bone type, energy and removal torque. RESULTS: Type I bone showed higher removal torque than type II bone. Energy value was significantly correlated with maximum insertion torque and mean insertion torque. RFA values were related with insertion torques but the significance was lower than Energy value. CONCLUSION: Within the limitation of this study energy values were considered clinically predictable method to measure the implant stability.

로우터리 경운(耕耘)시스템이 소요동력(所要動力)에 미치는 영향(影響) (Effects of Rotary Tilling Systems on Power Requirement)

  • 김성래;장동일;권순구;안영호
    • Journal of Biosystems Engineering
    • /
    • 제9권2호
    • /
    • pp.37-47
    • /
    • 1984
  • Using the soil bin systems, this study was carried out to analyze the effects of the angular and tilling speed of the rotary shaft with the edge curves which were $30^{\circ}$ and $40^{\circ}$, and the edged blade which were single and double, on the torque requirement of rotary tillage. In the analyses, we developed the mathematical models for the torque requirments of rotary tillage, and analyzed the optimum conditions of each variable for the minimum tillage torque requriements. The results of the study were summarized as follows. 1. The required tilling torque by one rotary blade has the minimum value when the tilling speed of the rotary blade was low, and the revolution of the rotary blade was fast, in general. 2. The torque requirements of single edged blade was decreased to about 81% in comparing with that of double edged blade of which the edge curved angle was $40^{\circ}$ and the tilling speed was 29.40 cm/sec. But, for the mean values, the maximum torque requirements were decreased to 45%, and the mean torque requirements were decreased to 35%. 3. For the edge curved angle, the torque requirements of ${\theta}=40^{\circ}$ were 48% more than that of ${\theta}=30^{\circ}$ in the maximum tilling torque in case that the rotary blade were double edged blade. but, there was not a difference when the rotary blades were single edged blade. The mean tilling torques of ${\theta}=40^{\circ}$ were 6% more when the rotary blade was double edged blade, and were 11% less at single edged blade, than that of ${\theta}=30^{\circ}$. 4. In order to reduce the torque requirements for tilling, the optimum revolutions of the rotary shaft were analyzed as that 204-240 rpm for the double edged blade and 280-320 rpm for the single edged blade.

  • PDF