• Title/Summary/Keyword: Maximum SUV uptake

Search Result 46, Processing Time 0.028 seconds

Quantitative Comparisons between CT and $^{68}Ge$ Transmission Attenuation Corrected $^{18}F-FDG$ PET Images: Measured Attenuation Correction vs. Segmented Attenuation Correction (CT와 $^{68}Ge$ 감쇠보정 $^{18}F-FDG$ PET 영상의 정량적 비교: 측정감쇠보정대 분할감쇠보정)

  • Choi, Joon-Young;Woo, Sang-Keun;Choi, Yong;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.49-53
    • /
    • 2007
  • Purpose: It was reported that CT-based measured attenuation correction (CT-MAC) produced radioactivity concentration values significantly higher than $^{68}Ge$-based segmented attenuation correction (Ge-SAC) in PET images. However, it was unknown whether the radioactivity concentration difference resulted from different sources (CT vs. Ge) or types (MAC vs. SAC) of attenuation correction (AC). We evaluated the influences of the source and type of AC on the radioactivity concentration differences between reconstructed PET images in normal subjects and patients. Material and Methods: Five normal subjects and 35 patients with a known or suspected cancer underwent $^{18}F-FDG$ PET/CT. In each subject, attenuation corrected PET images using OSEM algorithm (28 subsets, 2 iterations) were reconstructed by 4 methods: CT-MAC, CT-SAC, Ge-MAC, and Ge-SAC. The physiological uptake in normal subjects and pathological uptake in patients were quantitatively compared between the PET images according to the source and type of AC. Results: The SUVs of physiological uptake measured in CT-MAC PET images were significantly higher than other 3 differently corrected PET images. Maximum SUVs of the 145 foci with abnormal FDG uptake in CT-MAC images were significantly highest among 4 differently corrected PET images with a difference of 2.4% to 5.1% (p<0.001). The SUVs of pathological uptake in Ge-MAC images were significantly higher than those in CT-SAC and Ge-MAC PET images (p<0.001). Conclusion: Quantitative radioactivity values were highest in CT-MAC PET images. The adoption of MAC may make a more contribution than the adoption of CT attenuation map to such differences.

Evaluation of Reasonable $^{18}F$-FDG Injected Dose for Maintaining the Image Quality in 3D WB PET/CT (PET/CT 검사에서 영상의 질을 유지하기 위한 적정한 $^{18}F$-FDG 투여량의 평가)

  • Moon, A-Reum;Lee, Hyuk;Kwak, In-Suk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2011
  • Purpose: $^{18}F$-FDG injected dose to the patient is quite different between the recommended dose from manufacturer and the actual dose applied to each of hospitals. injection of inappropriate $^{18}F$-FDG dose may not only increase the exposed dose to patients but also reduce the image quality. we thus evaluated the proper $^{18}F$-FDG injected dose to decrease the exposed dose to patients considering the image quality. Materials And Methods: NEMA Nu2-1994 phantom was filled with $^{18}F$-FDG increasing hot cylinder radioactivity concentration to 1, 3, 5, 7, 9 MBq/kg based on the ratio of 4:1 between the hot cylinder and background activity. after completing the transmission scan using ct, emission scan was acquired in 3D mode for 2 minutes 30 seconds/bed. ROI was set up on hot cylinder and background radioactivity region. after measuring $SUV_{max}$ those regions, then analyzed SNR at the points. clinical experiment has been conducted the object of patients who have came to smc from november 2009 to august 2010, 97 patients without having a hepatic lesions were selected. ROI was set up in the liver and thigh area. after measuring $SUV_{max}$, the image quality was compared following the injected dose. Results: in phantom study, as the injected radioactivity concentration per unit mass was 1, 3, 5, 7, 9 MBq/kg, $SUV_{max}$ was 23.1, 24.1, 24.3, 22.8, 23.6 and SNR was shown 0.48, 0.54, 0.56, 0.55, 0.55. according to increment of the injected dose, $SUV_{max}$ and SNR was increased under 5 MBq/kg but they were decreased over 7 MBq/kg. in case of clinical experiment, as increased the injected radioactivity concentration per unit mass was 4.72, 5.34, 6.16, 7.41, 8.68 MBq/kg, $SUV_{max}$ was 2.68, 2.67, 2.26, 1.88, 1.95 and SNR was shown 0.52, 0.53, 0.46, 0.46, 0.44. if the injected dose exceeds 5 MBq/kg, showed a decrease pattern as phantom study. Conclusion: increasing $^{18}F$-FDG injected dose considered patient's body weight improve image quality within a certain range. if it exceeds the range, it can be reduced image quality due to random and scatter coincidences. this study indicates that the optimal injected dose was 5 MBq/kg per unit mass the injected radioactivity concentration in 3d wb pet/ct.

  • PDF

Evaluation of Average CT to Reduce the Artifact in PET/CT (PET/CT 검사에서 호흡에 따른 인공산물을 줄이기 위한 Average CT의 유용성)

  • Kim, Jung-Sun;Nam, Ki-Pyo;Park, Seung-Yong;Ryu, Jae-Kwang;Cha, Min-Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.3-7
    • /
    • 2010
  • Purpose: The usefulness of Positron Emission Tomography (PET) images in diagnosis, staging, recurrent and treatment response evaluation has already been known. However, tumors which are small size, located in lower lobe of lung or upper lobe of liver are shown misalignment, distortion and different Standard Uptake Value (SUV) by respiration in PET images. Therefore, if radiotherapy based on normal respiration, it may cause low treatment response or more side effects because targets which had to treat, out of treat range or over dose to normal tissue. The purpose of this study is to evaluate attenuation-correction with Average CT (ACT) for more accuracy SUV measurement and minimize artifact by respiration. Materials and Methods: 13 patients, who had tumors which are around the diaphragm, underwent ACT scan after Helical CT (HCT) scan with PET/CT (Discovery DSTE 8; GE Healthcare). We quantified the differences between attenuation corrected image with HCT and attenuation corrected image with ACT in artifact size and maximum SUV ($SUV_{max}$). Artifacts were evaluated by measurement of the curved photogenic area in the lower thorax of the PET images for all patients. $SUV_{max}$ was measured separately at the primary tumors. Analysis program was Advantage Workstation v4.3 (GE Healthcare). Patients were injected with 7.4 MBq (0.2 $mC_i$) per kg of $^{18}F$-FDG and scanned 1 hour after injection. The PET acquisition was 3 minute per bed. Results: Significantly lower artifact were observed in PET/ACT images than in PET/HCT images (below-thoracic artifacts caused by under corrected $1.5{\pm}3.5$ cm vs. $13.4{\pm}4.2$ cm). Significantly higher $SUV_{max}$ were noted in PET/ACT images than in PET/HCT images in the primary tumor. Compared with PET/HCT images, $SUV_{max}$ in PET/ACT images were higher by $5.3{\pm}3.9%$ (mean value) tumor. The highest difference was observed in Lower lobe of lung (7.7 to 8.7; 13%). Conclusion: Due to its significantly reduced artifacts in lower thoracic, attenuation corrected image with ACT images provided more reliable $SUV_{max}$ and may be helpful in monitoring treatment response. Moreover, ACT can separate upper lobe of liver and lower lobe of lung, it may be helpful in interpretation. ACT will be clinically useful, considering increased dose caused by ACT scan and adapt.

  • PDF

Comparison of Recovery Coefficients for Correction of Reduced SUV by Partial Volume Effect and Organ Movements in PET/CT Images (PET/CT 영상의 부분체적효과와 장기의 움직임으로 인해 감소된 SUV의 보정을 위한 회복계수의 비교)

  • Kim, Youngjae;Park, Hoon-Hee;Lee, Joo-Young;So, Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.3
    • /
    • pp.241-248
    • /
    • 2022
  • In this study, a recovery coefficient (RC) calculation was conducted that can correct the underestimation of the standardized uptake value (SUV) due to the partial volume effect (PVE) through phantom measurements and formulas. The experiment was conducted using a dynamic phantom capable of implement cranio-caudal movement at a respiratory rate of 15 times per minute along with the measured phantom experiment of the stopped state, and the RC of the moving state is calculated and compared. Ingenuity TF (Philips Healthcare, Netherland) was used as a positron emission tomography/computed tomography (PET/CT) device. PET-CT Phantom (Biodex Medical System, USA) was used as a phantom for measurement. A phantom image in a stationary state was acquired, and a moving phantom image was acquired using the AZ-733V Respiratory Phantom (Anzai Medical Co, Japan) capable of breathing movement in the cranio-caudal direction under the same acquisition parameters. For RC calculation, the sphere maximum radioactivity concentration and the background mean radioactivity concentration of the acquired images were measured, and the initially determined sphere and background radioactivity concentrations were calculated. The calculated RC was 0.08 to 0.72. The size of sphere smaller, it was confirmed that the RC reduced. And the RC in the moving state reduced than in the stationary state. As a result of this study, the change of the RC was confirmed according to the size of spheres and the phantom moving. Using the RC derived by implement movement of breathing with the respiratory phantom, it is possible to considering correction of underestimated SUV by the partial volume effect of PET images and the patient movements.

The Differentiation of Benign from Maligant Soft Tissue Lesions using FDG-PET: Comparison between Semi-quantitative Indices (FDG-PET을 이용한 악성과 양성 연부조직 병변의 감별: 반정량적 지표간의 비교)

  • Choi, Joon-Young;Lee, Kyung-Han;Choe, Yearn-Seong;Choi, Yong;Kim, Sang-Eun;Seo, Jai-Gon;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.90-101
    • /
    • 1997
  • The purpose of this study is to evaluate the diagnostic accuracy of various quantitative indices for the differentiation of benign from malignant primary soft tissue tumors by FDG-PET. A series of 32 patients with a variety of histologically or clinically confirmed benign (20) or malignant (12) soft tissue lesions were evaluated with emission whole body (5min/bed position) PET after injection of [$^{18}F$]FDG. Regional 20min transmission scan for the attenuation correction and calculation of SUV was performed in 16 patients (10 benign, 6malignant) followed by dynamic acquisition for 56min. Postinjection transmission scan for the attenuation correction and calculation of SUV was executed in the other 16 patients (10 benign, 6 malignant). The following indices were obtained. the peak and average SUV (pSUV, aSUV) of lesions, tumor-to-background ratio acquired at images of 51 min p.i. ($TBR_{51}$), tumor-to-background ratio of areas under time-activity curves ($TBR_{area}$) and the ratio between the activities of tumor ROI at 51 min p. i. and at the time which background ROI reaches maximum activity on the time-activity curves ($T_{51}/T_{max}$). The pSUV, aSUV, $TBR_{51}$, and $TBR_{area}$ in malignant lesions were significantly higher than those in benign lesions. We set the cut-off values of pSUV, aSUV, $TBR_{51},\;TBR_{area}$ and $T_{51}/T_{max}$ for the differentiation of benign and malignant lesions at 3.5, 2.8, 5.1, 4.3 and 1.55, respectively. The sensitivity, specificity and accuracy were 91.7%, 80.0%, 84.4% by pSUV and aSUV, 83.3%, 85.0%, 84.4% by $TBR_{51}$, 83.3%, 100%, 93.8% by $TBR_{area}$ and 66.7%, 70.0%, 68.8% by $T_{51}/T_{max}$. The time-activity curves did not give additional information compared to SUV or TBR. The one false negative was a case with low-grade fibrosarcoma and all four false positives were cases with inflammatory change on histology. The visual, analysis of FDG-PET also detected the metastatic lesions in malignant cases with comparable accuracy In conclusion, all pSUV, aSUV, $TBR_{51}$, and $TBR_{area}$ are useful metabolic semi-quantitative indices with good accuracy for the differentiation of benign from malignant soft-tissue lesions.

  • PDF

Kikuchi-Fujimoto disease mimicking malignant lymphoma with 2-[$^{18}F$]fluoro-2-deoxy-D-glucose PET/CT in children

  • Kim, Ji Eun;Lee, Eun Kyung;Lee, Jae Min;Bae, Soon Hwan;Choi, Kwang Hae;Lee, Young Hwan;Hah, Jeong Ok;Choi, Joon Hyuk;Kong, Eun Jung;Cho, Ihn Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.5
    • /
    • pp.226-231
    • /
    • 2014
  • Purpose: Kikuchi-Fujimoto disease (KFD) is a benign disease, which is characterized by a cervical lymphadenopathy with fever, and it often mimics malignant lymphoma (ML). 2-[$^{18}F$]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ($^{18}F$-FDG PET/CT) is a powerful imaging modality for the diagnosis, staging and monitoring of ML, with the limitations including the nonspecific FDG uptake in infectious or inflammatory processes. This study compared clinical manifestations and PET/CT findings between KFD and ML patients. Methods: We retrospectively reviewed the medical records of 23 patients with KFD and 33 patients with ML, diagnosed histopathologically, between January 2000 and May 2013 at the Department of Pediatrics, Yeungnam University Medical Center. Among them, we analyzed the clinical manifestations, laboratory findings and characteristics, and the amount of $^{18}F$-FDG uptake between 8 KFD and 9 ML patients who had $^{18}F$-FDG PET/CT. Results: The $^{18}F$-FDG PET/CT maximum standardized uptake values ($SUV_{max}$) ranged from 8.3 to 22.5 (mean, 12.0) in KFDs, and from 5.8 to 34.3 (mean, 15.9) in MLs. There were no significant differences in $SUV_{max}$ between KFDs and MLs. $^{18}F$-FDG PET/CT with ML patients showed hot uptakes in the extranodal organs, such as bone marrow, small bowel, thymus, kidney, orbit and pleura. However, none of the KFD cases showed extranodal uptake (P<0.001). $^{18}F$-FDG PET/CT findings of KFD with nodal involvement only were indistinguishable from those of ML. Conclusion: Patients who had extranodal involvement on PET/CT were more likely to have malignancy than KFD.

ATAD2 expression increases [18F]Fluorodeoxyglucose uptake value in lung adenocarcinoma via AKT-GLUT1/HK2 pathway

  • Sun, Tong;Du, Bulin;Diao, Yao;Li, Xuena;Chen, Song;Li, Yaming
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.457-462
    • /
    • 2019
  • [18F]Fluorodeoxyglucose (FDG) PET/CT imaging has been widely used in the diagnosis of malignant tumors. ATPase family AAA domain-containing protein 2 (ATAD2) plays important roles in tumor growth, invasion and metastasis. However, the relationship between [18F]FDG accumulation and ATAD2 expression remains largely unknown. This study aimed to investigate the correlation between ATAD2 expression and [18F]FDG uptake in lung adenocarcinoma (LUAD), and elucidate its underlying molecular mechanisms. The results showed that ATAD2 expression was positively correlated with maximum standardized uptake value ($SUV_{max}$), total lesion glycolysis (TLG), glucose transporter type 1 (GLUT1) expression and hexokinase2 (HK2) expression in LUAD tissues. In addition, ATAD2 knockdown significantly inhibited the proliferation, tumorigenicity, migration, [18F]FDG uptake and lactate production of LUAD cells, while, ATAD2 overexpression exhibited the opposite effects. Furthermore, ATAD2 modulated the glycometabolism of LUAD via AKT-GLUT1/HK2 pathway, as assessed using LY294002 (an inhibitor of PI3K/AKT pathway). In summary, to explore the correlation between ATAD2 expression and glycometabolism is expected to bring good news for anti-energy metabolism therapy of cancers.

Incidental Benign Parotid Lesions on FDG-PET: Prevalence and Clinico-pathologic Findings (FDG-PET 검사시 우연히 발견한 양성 이하선 병변: 유병율과 임상 및 병리 소견)

  • Lim, Il-Han;Lee, Won-Woo;Chung, Jin-Haeng;Park, So-Yeon;Kim, Sang-Hee;Kim, Yu-Kyeong;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.359-363
    • /
    • 2007
  • Purpose: Incidental parotid lesions on F-18 FDG-PET can mimic distant metastasis of underlying malignancy. The prevalence and the clinico-pathologic findings of PET positive parotid lesions have not been known. We investigated how often incidental parotid lesions are found on clinical FDG-PET studies and what the clinico-pathologic characteristics of those parotid lesions are in the present study. Materials and Methods: We retrospectively reviewed 3,344 cases of FDG-PET which had been obtained in our hospital from May 2003 to Dec 2006. The indications of FDG-PET were: evaluation of known/suspected cancer (n= 3,212) or screening of cancer in healthy subjects (n=132). Incidental parotid lesion on FDG-PET was defined as an un-expected FDG uptake in one of parotid glands which was not primary target lesion of current FDG-PET. FDG uptake was represented by maximum standardized uptake value (maxSUV). Final diagnosis was made by pathologic analysis or clinical follow-up assessment. Results: Fifteen (0.45% = 15/3,344) incidental parotid lesions were found and they were all benign lesions. The maxSUV ranged from 1.7 to 8.6 (mean${\pm}$s.d. = $3.7{\pm}1.9$). Final diagnoses of the incidental parotid lesions were; Warthin's tumor (n=2), pleomorphic adenoma (n=1), other un-specified benign lesion (n=1), and benign lesions under bases of imaging studies (n=3) and of clinical follow-up (n=8). Conclusion: All of incidentally found parotid lesions in clinical FDG-PET studies were confirmed as benign lesions with prevalence of 0.45%. Close follow up using PET or CT might be a reasonable approach for determining the nature of incidentally found parotid lesions.

Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom (양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석)

  • Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.935-942
    • /
    • 2021
  • Involuntary movement of internal organs by respiration is a factor that greatly affects the results of radiotherapy and diagnosis. In this study, a moving phantom was fabricated to simulate the movement of an organ or a tumor according to respiration, and 18F-FDG PET/CT scan images were acquired under various respiratory simulating conditions to analyze the movement range of the tumor movement by respiration, the level of artifacts according to the size of the tumor and the maximum standardized uptake value (SUVmax). Based on Windows CE 6.0 as the operating system, using electric actuator, electric actuator positioning driver, and programmable logic controller (PLC), the position and speed control module was operated normally at a moving distance of 0-5 cm and 10, 15, and 20 reciprocations. For sphere diameters of 10, 13, 17, 22, 28, and 37 mm at a delay time of 100 minutes, 80.4%, 99.5%, 107.9%, 113.1%, 128.0%, and 124.8%, respectively were measured. When the moving distance was the same, the difference according to the respiratory rate was insignificant. When the number of breaths is 20 and the moving distance is 1 cm, 2 cm, 3 cm, and 5 cm, as the moving distance increased at the sphere diameters of 10, 13, 17, 22, 28, and 37 mm, the ability to distinguish images from smaller spheres deteriorated. When the moving distance is 5 cm compared to the still image, the maximum values of the standard intake coefficient were 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, and 67.4% for sphere diameters of 10, 13, 17, 22, 28, and 37 mm, respectively.

Improved Specificity of $^{18}F-FDG$ PET/CT for Lymph Node Staging of Non-Small Cell Lung Cancer Considering Calcified Lymph Node as Benign (비소세포 폐암에서 석회화 림프절을 양성으로 보았을 때 $^{18}F-FDG$ PET/CT의 특이도 향상)

  • Kwon, Seong-Young;Seo, Young-Soon;Min, Jung-Joon;Song, Ho-Chun;Na, Kook-Joo;Choi, Chan;Kim, Young-Chul;Kim, Yun-Hyun;Bom, Hee-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • Purpose: We evaluated the diagnostic value of $^{18}F-FDG$ PET/CT (PET/CT) in lymph node staging of non-small cell lung cancer (NSCLC) considering calcification and histologic types as well as FDG uptake. Materials and Methods: Fifty-three patients (38 men, 15 women; mean age, 62 years) with NSCLC underwent surgical resection (tumor resection and lymph node dissection) after PET/CT. After surgery, we compared PET/CT results with the biopsy results, and analyzed lymph node metastases, based on histologic types. PET diagnosis of lymph node metastasis was determined by maximum SUV (maxSUV) > 3.0, and PET/CT diagnosis was determined by maxSUV > 3.0 without lymph node calcification. Results: By PET diagnosis, the sensitivity, specificity, and accuracy of overall lymph node staging were 45% (13 of 29), 91% (228 of 252), and 86% (241 of 281). Specificity was 91% in both squamous cell carcinoma and adenocarcinoma, while sensitivity was 71% in squamous cell carcinoma and 36% in adenocarcinoma. When we excluded calcified lymph node with maxSUV > 3.0 from metastasis by PET/CT diagnosis, specificity improved to 98% in squamous cell carcinoma and 97% in adenocarcinoma. The degree of improvement was not dependent on histologic types. Conclusion: PET/CT improved specificity of lymph node staging by reducing false positive lymph node regardless of histologic types of NSCLC.