• Title/Summary/Keyword: Maximum Principal Tensile Stress

Search Result 46, Processing Time 0.027 seconds

Software and Hardware Development of Micro-indenter for Material Property Evaluation of Hyper-Elastic Rubber (초탄성고무 물성평가용 미소압입시험기의 소프트웨어 및 하드웨어 개발)

  • Lee, Hyung-Yil;Kim, Dong-Wook;Lee, Jin-Haeng;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.816-825
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are examined via finite element (FE) analyses. An optimal location for data analysis is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/com-pression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve with an average error less than 3%.

Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber (초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng;Kim, Dong-Wook
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via finite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve.

Interpretation of Paleostress using Geological Structures observed in the Eastern Part of the Ilgwang Fault (일광단층 동편에서 관찰되는 지질구조를 이용한 고응력사 해석)

  • Kim, Taehyung;Jeong, Su-Ho;Lee, Jinhyun;Naik, Sambit Prasanajit;Yang, Wondong;Ji, Do Hyung;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.645-660
    • /
    • 2018
  • In the southeastern part of the Korean Peninsula, huge fault valleys, including the Yangsan and Ulsan faults, are recognized. These NNE-SSW trending lineaments are called as a whole Yangsan Fault System. However, this fault system is relatively poorly studied except the Yangsan and Ulsan faults. This study deduced the paleostress history based on the mutual cross-cutting relationships between geologic structures developed in the granite body near the Ilgwang fault, which is compared with previous studies. In the study area, four lineaments parallel to the Ilgwang fault are recognized, and three of them show evidences of faulting. In each lineament, both slip-senses of left-lateral and right-lateral are recognized. It indicates that these faults consistently underwent multiple deformations of inversion along the faults. The inferred paleostress directions based on the mutual cross-cutting relationships of the geological structures are as follows: 1) Tensile fractures developed in the late Cretaceous under the ENE-WSW direction of compressive stress, 2) NW-SE trending maximum horizontal principal stress generated conjugate strike-slip faults, and 3) selective reactivations of some structures were derived under the compression by the NE-SW trending principal stress.

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering. Inc., Troy, USA) and ANSYS (Swanson Analysis Systems. Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Viva dent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition. Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.

  • PDF

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering, Inc., Troy, USA) and ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Vivadent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition, Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.