• Title/Summary/Keyword: Maximum Power Point Tracking

Search Result 488, Processing Time 0.043 seconds

Design of Hybrid System for Battery Charge·Discharge using Photovoltaic/Fuel cell (태양광/연료전지용 배터리 충·방전 하이브리드 시스템 설계)

  • Park, Bong-Hee;Jo, Yeong-Min;Choi, Ju-Yeop;Cho, Sang-Yoon;Choy, Ick;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Photovoltaic and fuel cell systems can be used as power source in mobile robots. At this time the photovoltaic system generally generate power in daytime. The starting time of fuel cell is slower than the lithium battery. To compensate for these disadvantages, a battery charge-discharge system is used. Especially the bi-directional converter is used mainly in the charge-discharge method. The controller in a buck converter controls the input voltage of the converter to meet the maximum power point tracking(MPPT) performance. First of all, the simulations of hybrid system for battery charge-discharge system in each step simulated using solar and fuel cell modeling as input source in PSIM. Experiment of the buck and bi-directional converter system is conducted through using photovoltaic/fuel cel simulator(pCube) instead of solar and fuel cell. This hybrid system for battery charge discharge using photovoltaic/fuel cell generates emergency power for the communication system in mobile robot.

The development and operation characteristics analysis of PCS applied PV Output Senseless (POS) MPPT (PV Output Senseless (POS) MPPT 제어법이 적용된 단상 PCS 개발 및 운전특성 분석)

  • Lee, Seok-Ju;Park, Hae-Yong;Kim, Gyeong-Hun;Seo, Hyo-Ryong;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.226-227
    • /
    • 2007
  • The purpose of this study for photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional MPPT (Maximum Power Point Tracking) control method, both voltage and current coming out from PV array have to be fedback. Thus, the system has a complex structure, and may fail to track MPP of PV array when unexpected weather conditions happen. This paper proposes a novel PV Output Senseless (POS) control method to solve the mentioned problem. The main advantage of this method is that the current flowing into load is the only one considerable factor. In case of a huge PV generation system, it can be operated much more safely than the conventional system. To verify this theory, results that compare and analyze the simulated data with experimental data under real weather condition of the manufactured PV generation system are shown in this paper. Authors vividly states that this theory uses constant resistors and variable resistors of DC-DC converter in PV system. Authors emphasize that it is a very useful method to maximize power from PV cells to load with only the feedback of load current. Authors also emphasize that this theory is applicable in case of the PCS in PV power generation system.

  • PDF

A Study on Vegetative Propagation by Runner Optimization Algorithm-based Maximum Power Point Tracking for Photovoltaic (포복경 영양 번식 최적화 알고리즘 기반 태양전지 최대 전력 점 추적에 관한 연구)

  • Jung, Jin-Woo;Jung, Kyung-Kwon;Lee, Tea-Won;Park, Sung-Il;Son, Young-Ok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.493-502
    • /
    • 2021
  • A Vegetative Propagation by Runner(VPR) Algorithm-based on MPPT Algorithm that can track MPP by adapting to external environmental changes is presented. VPR is an optimization algorithm that mimics the plant ecology of movement and reproduction based on vegetation organs. The VPR algorithm includes a procedure for aging and a procedure for searching the surroundings by rhizomes. Accordingly, it is possible to continuously search around the optimal point. Therefore, the VPR-based MPPT algorithm can continuously search for an optimal point by adapting the changes in the external environment in the process of executing the MPPT algorithm. In this paper, we analyzed the performance of the VPR-based MPPT algorithm by a number of simulations. In addition, the superiority of performance was compared by performance comparison in the same environment as MPPT algorithm based on PSO.

MPPT Control of Photovoltaic using Neural Network (신경회로망을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.221-223
    • /
    • 2008
  • This paper presents a maximum power point tracking(MPPT) of Photovoltaic system with chopping ratio of DC-DC converter considered load. A variation of solar irradiation is most important factor in the MPPT of PV system. That is nonlinear, aperiodic and complicated. The paper consists of solar radiation source, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an adaptive control of neural network, calculates converter-chopping ratio using an adaptive control of NN. The results of an adaptive control of NN compared with the results of converter-chopping ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

  • PDF

Development of Active MPPT Algorithm of PV system Considering Shadow Influence (그림자 영향을 고려한 PV 시스템의 능동형 MPPT 알고리즘 개발)

  • Mun, Ju-Hui;Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Kim, Soon-Young;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1384-1385
    • /
    • 2011
  • This paper presents the active maximum power point tracking(MPPT) control of the photovoltaic(PV) module integrated converter(MIC) system considering the shadow influence. Conventional perturbation and observation(PO) and incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, the active MPPT in which the step value changes by output change is presented. In case there are the solar radiation, a temperature and shadow influence, the presented algorithm treats and compares the conventional control algorithm and output error. In addition, the validity of the algorithm is proved through the output error response characteristics.

  • PDF

Maximum Power Point Tracking Algorithm in Seaflow Generation System (조류발전 시스템의 최대출력 알고리즘)

  • An, Won-Young;Kim, Gun-Su;Lee, Seok-Hyun;Lee, Cheon;Jo, Chul-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1336-1337
    • /
    • 2011
  • 본 논문은 최근 이슈가 되고 있는 해양에너지 중 해류의 흐름을 이용한 조류발전 시스템에 관한 것으로 대학 실험실규모에서 조류발전 시스템의 성능 및 특성을 효율적으로 시험 평가할 수 있도록 구성된 모의실험 장치에 관한 것이다. 조류발전은 타 에너지원에 비해 발전의 제한조건과 단점이 거의 없으며 국내 자연환경에 적용하기에 적합한 많은 장점을 가지고 있다. 본 논문에서는 조류발전 시스템의 성능 및 특성을 시험할 수 있도록 Motor-Generator Set(M-G Set)을 구성하였고, 최대출력제어를 위해 사전에 PSIM을 이용하여 시뮬레이션을 수행하여 최대 출력제어 알고리즘을 검증하였다. 구축된 조류 발전 모의실험 장치는 해양의 기후, 시간 변화에 따른 조류 속도 변화를 효율적으로 모의할 수 있도록 전동기 속도 제어를 가능하도록 하였다. 조류발전 시스템에서는 와류등으로 인해 유속을 측정하기 힘들고, 오차가 발생할 가능성이 많다. 그래서 유속 정보 없이 최대출력제어가 가능한 알고리즘을 시뮬레이션하여 수행하였다. 본 연구는 향후 실시간 발전 사항을 모니터링 할 수 있도록 LabVIEW 기반 모니터링 시스템에서 최대 출력제어 시스템을 구축하기 위한 좋은 자료로 쓰일 것이라 판단된다.

  • PDF

Comparative Study between Two and Single-loop Control of Boost Converter for PVPCS (태양광용 부스트 컨버터의 2중 루프 제어 및 단일 루프 제어의 특성 비교)

  • Kim, Dong-Whan;Im, Ji-Hoon;Song, Seung-Ho;Choi, Ju-Yeop;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.153-159
    • /
    • 2012
  • In photovoltaic system, the characteristic of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, a boost converter of the PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristic of the boost converter by comparing single-loop control algorithm and two-loop control algorithm using both analog and digital control. The proposed both compensation method has been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control schemes.

  • PDF

MPPT of photovoltaic system with duty ratio of DC-DC converter considered load (부하를 고려한 DC-DC 컨버터의 듀티비에 따른 태양광 발전 시스템의 최대전력점 추적)

  • Jun, Young-Sun;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.407-410
    • /
    • 2008
  • This paper presents a maximum power point tracking(MPPT) of photovoltaic system with duty ratio of DC-DC converter considered load. A variation of solar irradiation is most important factor in the MPPT of PV system That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. The paper consists of solar radiation source, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an adaptive control of neural network, calculates converter-duty ratio using an adaptive control of NN. The results of an adaptive control of NN compared with the results of converter-duty ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

  • PDF

Improved constant voltage control method for maximum power point tracking function (개선된 일정전압제어방식의 최대전력추종 제어기법 연구)

  • Yu, Byung-Gyu;Matsui, Mikihiko;Jung, Young-Seok;So, Jung-Gun;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.228-229
    • /
    • 2007
  • 현재까지 계통연계형 태양광 시스템의 최대전력추종(MPPT)방법에 대한 많은 연구가 진행되고 있다. 그 중 대표적인 최대 전력 추종 방법에는 일정전압 제어방식, P&O(Perturbation and Observation)제어방식, IncCond(Incremental Condutance) 제어 방식이 있다. 이 중 일정전압 제어방식은 일사량, 온도 등을 고려해 특정한 값의 태양전지 출력전압을 고정시키도록 하여, 최대전력점 근처에서 동작하도록 제어하는 방식이다. 이 방식은 태양전지 입력 전류 센서가 필요없고, 저일사량 조건에서 다른 기법에 비해 우수한 효율 특성을 나타내고 있다. 하지만, 온도 및 일사 조건에 따라 변하는 최대전력전압지점을 추종하지 못해 다양한 조건에서 최대전력추종효율이 떨어지는 단점이 있다. 이에 본 논문에서는 다양한 일사 조건 및 온도 조건에 대응하는 최대 출력전압을 실시간으로 산출하여, 이를 통해 최대전력추종제어를 하는 방법을 제안하고자 한다. 제안된 기법은 다양한 일사조건 및 온도변화에 대해 능동적으로 대응하여 우수한 추종효율 특성을 나타내고, 또한 입력 DC 전류 센서를 제거하고, 내부 연산이 간단함으로써 경제적인 면에서 유리하다. 본 논문에서 제안된 최대전력 추종기법의 타당성을 검증하기 위해서 PSIM 시뮬레이션을 통해 그 타당성을 검증 하였다.

  • PDF

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.