• Title/Summary/Keyword: Maximum Power Point

Search Result 915, Processing Time 0.03 seconds

Power Gain during Partial Shade Condition with Partial Shade Loss Compensation in Photovoltaic System

  • Yoon, Byung-Keun;Yun, Chul;Cho, Nae-Soo;Choi, Sang-Back;Jin, Yong-Su;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.769-780
    • /
    • 2018
  • This paper presents an analysis of the power gain under partial shading conditions (PSC) when the partial shade loss is being compensated in photovoltaic(PV) system. To analyze the power gain, our study divides the mismatch loss into partial shade loss and operating point loss. Partial shade loss is defined as the power difference between a normal string and a partially shaded string at the maximum power point (MPP). Operating point loss is defined as the power loss due to the operating point shift while following the MPP of the PV array. Partial shading in a PV system affects the maximum power point tracking (MPPT) control by creating multiple MPPs, which causes mismatch losses. Several MPPT algorithms have been suggested to solve the multiple MPP problems. Among these, mismatch compensation algorithms require additional power to compensate for the mismatch loss; however, these algorithms do not consider the gain or loss between the input power required for compensation and the increased output power obtained after compensation. This paper analyzes the power gain resulting from the partial shade loss compensation under PSC, using the V-P curve of the PV system, and verifies that power gain existence by simulation and experiment.

Maximum Power Control of Tidal Current Generation System using P&O Algorithm (P&O알고리즘을 이용한 조류발전 시스템의 최대출력 제어)

  • Moon, Seok-Hwan;Kim, Ji-Won;Park, Byung-Gun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • Maximum Power Point Tracking (MPPT) control needs to generate the maximum power of a tidal current turbine. A tidal current speed sensor is required to achieve effective generated power in a tidal current generation system. The most common methods used to achieve such power is the tip speed ratio of turbine and tidal current information. However, these methods have disadvantages, such as expensive installation of the tidal current sensor, parameter errors in turbine design, and different information according to the installed position of the tidal current sensor. This paper proposes a maximum power control scheme using perturb-and-observe (P&O) for tidal current generation system. The proposed P&O MPPT scheme can achieve the maximum power without tidal current sensors and turbine design parameters. The reliability and suitability of the proposed control scheme are proven through simulation and experiment results at the tidal current generation laboratory.

MPPT Control of Photovoltaic by FNN (FNN에 의한 태양광 발전의 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1968-1975
    • /
    • 2009
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system.. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point(MPP) is accurately tracked.. The paper proposes a fuzzy neural network(FNN) control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. FNN has the advantages which are depicted both high performance and robustness in fuzzy control and high adaptive control in neural network.. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In this paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

A Modeling of CMOS Inverter for Maximum Power Dissipation Prediction (CMOS 인버터의 최대 전력소모 예측을 위한 모델링)

  • 정영권;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1057-1060
    • /
    • 1998
  • Power Dissipation and circuit speed become the most importance parameters in VLSI system maximum power dissipation for VLSI system design. We remodeled CMOS inverter according to the operating region, saturation region or linear regin, and calculate maximum power dissipation point of CMOS inverter. The result of proposed maximum power dissipation model compared with those from SPICE simulation which results that the proposed maximum power dissipation model has the error rate within 10% to SPICE simulation.

  • PDF

Comparisons on Maximum Power Point Tracking Control of a Thermoelectric Generator on Vehicles (차량 적용을 위한 열전 소자 최대 전력 추종 제어 비교)

  • Jang, Yohan;Choung, Seunghoon;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.159-166
    • /
    • 2021
  • This study compares the maximum power point tracking (MPPT) control methods of a thermoelectric generator on vehicles. The researchers conduct comparisons on five different MPPT methods, including a fractional open circuit voltage method, a perturbation and observation (P&O) method, an incremental conductance method, a linear extrapolation-based MPPT (LEMPPT) method, and a LEMPPT/P&O hybrid method. These five MPPT methods are theoretically analyzed in detail, and the comparisons are conducted through MATLAB/Simulink simulation results. The comparison outcomes reveal that linear MPPT methods, including LEMPPT and LEMPPT/P&O hybrid methods, are more suitable for a thermoelectric generator on vehicles than the other MPPT methods examined in this work.

Loss Minimization of DFIG for Wind Power Generation

  • Abo-Khalil, Ahmed G.;Park, Hong-Geuk;Lee, Dong-Choon;Lee, Se-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.315-317
    • /
    • 2007
  • This paper proposes a loss minimization algorithm for doubly-fed induction generator (DFIG) by controlling the stator reactive power. The proposed strategy directly controls the rotor current to achieve the operating point of minimum generator loss and maximum power point tracking. The maximum power is obtained by tracking the q-axis rotor current with generator speed variation and the minimum generator loss is achieved by controlling the d-axis rotor current. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Design of a Thermal Energy Harvesting Circuit with MPPT Control (MPPT 제어 기능을 갖는 열에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Kim, Su-Jin;Park, Kum-Young;Oh, Won-Seok;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2487-2494
    • /
    • 2012
  • In this paper, a thermal energy harvesting circuit with MPPT control is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the linear relationship between the open-circuit voltage of a thermoelectric generator(TEG) and its MPP voltage. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a TEG, makes the reference voltages using sampled voltage and delivers the maximum available power to load. Simulation results show that the maximum power efficiency of the designed circuit is 94%. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process, and the chip area except PAD is $1168.7{\mu}m{\times}541.3{\mu}m$.

Design of a Triple-input Energy Harvesting Circuit with MPPT Control (MPPT 제어기능을 갖는 삼중입력 에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.346-349
    • /
    • 2013
  • This paper describes a triple-input energy harvesting circuit using solar, vibration and thermoelectric energy with MPPT(Maximum Power Point Tracking) control. The designed circuit employs MPPT control to harvest maximum power available from a solar cell, PZT vibration element and thermoelectric generator. The harvested energies are simultaneously combined and stored in a storage capacitor, and then managed and transferred into a sensor node by PMU(Power Management Unit). MPPT controls are implemented using the linear relation between the open-circuit voltage of an energy transducer and its MPP(Maximum Power Point) voltage. The proposed circuit is designed in a CMOS 0.18um technology and its functionality has been verified through extensive simulations. The designed chip occupies $945{\mu}m{\times}995{\mu}m$.

  • PDF

A Study on the Instrumentation and Valuation of Photovoltaic Energy Utilization System (태양광발전 에너지이용시스템의 계측과 평가에 관한 연구)

  • Chung, Heun-Sang;Baek, Hyung-Lae;Cho, Geum-Bae;Kim, Dong-Hwi;Kim, Dae-Gon;You, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.496-499
    • /
    • 1991
  • Photovoltaic system has very low energy conversion efficiency and the output characteristics of solar cell is varied by the Insolation quantity and the temperature. In order to improve the efficiency of photovoltaic system, the energy which has got from solar cell must be use maximum. In this paper, it was stimultaneous executed both MPPT control and instrumentation in order that the operating point of solar cell is located maximum power point, using the PWM inverter and micro-computer, which is for the purpose of acquiring maximum power from the solar cell. As a result, maximum power point tracking had carried out and the efficiency of photovoltaic system improved, even if insolation quantity and the temperature are varied.

  • PDF

Dual-Algorithm Maximum Power Point Tracking Control Method for Photovoltaic Systems based on Grey Wolf Optimization and Golden-Section Optimization

  • Shi, Ji-Ying;Zhang, Deng-Yu;Ling, Le-Tao;Xue, Fei;Li, Ya-Jing;Qin, Zi-Jian;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.841-852
    • /
    • 2018
  • This paper presents a dual-algorithm search method (GWO-GSO) combining grey wolf optimization (GWO) and golden-section optimization (GSO) to realize maximum power point tracking (MPPT) for photovoltaic (PV) systems. First, a modified grey wolf optimization (MGWO) is activated for the global search. In conventional GWO, wolf leaders possess the same impact on decision-making. In this paper, the decision weights of wolf leaders are automatically adjusted with hunting progression, which is conducive to accelerating hunting. At the later stage, the algorithm is switched to GSO for the local search, which play a critical role in avoiding unnecessary search and reducing the tracking time. Additionally, a novel restart judgment based on the quasi-slope of the power-voltage curve is introduced to enhance the reliability of MPPT systems. Simulation and experiment results demonstrate that the proposed algorithm can track the global maximum power point (MPP) swiftly and reliably with higher accuracy under various conditions.