• Title/Summary/Keyword: Maximum Power Generation

Search Result 735, Processing Time 0.031 seconds

A Study on Start·Stop System at Water Turbine-Generator for Tidal Power Plant (조력발전용 수차발전기의 기동·정지시스템에 관한 연구)

  • Oh, Min-Hwan;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • Tidal power is one of new and renewable energy sources. Tidal power is generated by using the gap in the water level between the water outside and inside the embankment. All tidal power plant in Korea were being operated by import of turn-key from abroad. The know-how and technology which are the most important to build predictive control system has become increasingly difficult to obtain from advanced countries because most of them avoid to transfer, which the domestic development of the control system is needed. In this paper, a study on start stop system at water turbine-generator for tidal power plant at the beginning of development was presented. For improvement the efficiency and develope of core technology of the start stop system, the technique and characteristics of tidal power, modeling, maximum generation calculation method, and optimal control of joint control system in Sihwa tidal power plant were studied.

Regulated Incremental Conductance (r-INC) MPPT Algorithm for Photovoltaic Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1544-1553
    • /
    • 2019
  • The efficiency of photovoltaic generation systems depends on the maximum power point tracking (MPPT) technique. Among the various schemes presented in the literature, the incremental conductance (INC) method is one of the most frequently used due to its superb tracking ability under changes in insolation and temperature. Generally, conventional INC algorithms implement a simple duty-cycle updating rule that is mainly found on the polarity of the peak-power evaluation function. However, this fails to maximize the performance in both steady-state and transient conditions. In order to overcome this limitation, a novel regulated INC (r-INC) method is proposed in this paper. Like the compensators in automatic control systems, this method applies a digital compensator to evaluate the INC function and improve the capability of power tracking. Precise modeling of a new MPPT system is also presented in the optimized design process. A 120W boost peak power tracker is utilized to obtain comparative test results and to confirm the superiority of the proposed method over existing techniques.

Sensorless MPPT Control for a Small-scale Wind Power Generation System with a Switched-mode Rectifier(SMR) (SMR을 갖는 소형풍력발전시스템의 센서리스 MPPT제어)

  • Xu, Chengde;Lee, Joon-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1688-1693
    • /
    • 2013
  • A small-scale wind power generation system with a switched-mode rectifier(SMR) is proposed. To simplify the converter circuit of the wind power generation system, the synchronous inductors of the permanent magnet synchronous generator(PMSG) replace the inductor for the boost converter. The sensorless maximum power point tracking(MPPT) control is carried out for the wind power generation system with the SMR. The proposed system is verified through the simulations and the experiments.

Design Considerations for a Distributed Generation System Using a Voltage-Controlled Voltage Source Inverter

  • Ko, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong;Naya, Chemmangot V.;won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.643-653
    • /
    • 2009
  • Voltage-controlled voltage source inverter (VCVSI) based distributed generation systems (DGS) using renewable energy sources (RES) is becoming increasingly popular as grid support systems in both remote isolated grids as well as end of rural distribution lines. In VCVSI based DGS for load voltage stabilization, the power angle between the VCVSI output voltage and the grid is an important design parameter because it affects not only the power flow and the power factor of the grid but also the capacity of the grid, the sizing of the decoupling inductor and the VCVSI. In this paper, the steady state modeling and analysis in terms of power flow and power demand of the each component in the system at the different values of maximum power angle is presented. System design considerations are examined for various load and grid conditions. Experimental results conducted on a I KVA VCVSI based DGS prove the analysis and simulation results.

A Quick MPPT Strategy of Rooftop Photovoltaic Generation System for the Electric Vehicle (전기자동차를 위한 루프형 태양광 발전 시스템의 속응 최대 전력점 추종기법)

  • Kang, Kyoungpil;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.325-326
    • /
    • 2014
  • This paper is research about the Maximum Power Point Tracking following algorism of solar power system attached small electric car. In this paper, we investigate P&O MPPT and Incremental Conduction MPPT among existing MPPT following algorism. And by changing them, the better algorism is proposed being able to follow Maximum Power Point rapidly as amount of solar radiation changes applied to the Solar Energy Generation System.

  • PDF

Maximum Output Power Control of Wind Generation System Using Fuzzy Control (퍼지제어를 이용한 풍력발전 시스템의 최대출력 제어)

  • Abo-Khalil, Ahmed. G.;Kim, Young-Sin;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.497-504
    • /
    • 2005
  • For maximum output power, wind turbines are usually controlled at the speed which is determined by the optimal tip-speed ratio. This method requires information of wind speed and the power conversion coefficient which is varied by the pitch angle control. In this paper, a new maximum output power control algorithm using fuzzy logic control is proposed, which doesn't need this information. Instead, fuzzy controllers use information of the generator speed and the output power. By fuzzy rules, the fuzzy controller produces a new generator reference speed which gives the maximum output power of the generator for variable wind speeds. The proposed algorithm has been implemented for the 3[kW] cage-type induction generator system at laboratory, of which results verified the effectiveness of the algorithm.

Analysis on the power generation efficiency by the direct sunlight (태양광 발전 시스템별 직사광선에 의한 발전효율 분석)

  • Lee, Jaydy;Rhee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.89-91
    • /
    • 2008
  • The photovoltaic industry is growing at a tremendous speed. And it can be one of the key factors for success in the photovoltaic business to choose a suitable system, and setting it up right so as to get a maximum efficiency of the site. Therefore, it is regarded to be necessary to research the efficiency of systems to catch maximum photovoltaic energy. In this research, the expected power generation efficiencies are analysed, and compared with each other. This research considered the direct sunlight only, and the angle between the direction of solar panel and sunlight as factors to affect the power generation. Therefore, only rough analyses and estimations are found on 3 systems of fixed system, double-axes tracking system, and horizontal tracking system.

  • PDF

Optimum MPPT Control Period for Actual Insolation Condition (실제 일사량 조건에서의 최적 MPPT 제어주기)

  • Ryu, Danbi;Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2019
  • Solar power generation systems require maximum power point tracking (MPPT) control to acquire maximum power using inefficient and high-cost PV modules. Most conventional MPPT algorithms are based on the slope-tracking concept. The perturb and observe (P&O) algorithm is a typical slope-tracking method. The two factors that determine the MPPT performance of P&O algorithm are the MPPT control period and the magnitude of the perturbation voltage. The MPPT controller quickly moves to the new maximum power point at insolation change when the perturbation voltage is set to large, and the error of output power will be huge in the steady state even when insolation is not changing. The dynamics of the MPPT controller can be accelerated even though the perturbation voltage is set to small when the MPPT control period is set to short. However, too short MPPT control period does not improve MPPT performance but consumes the MPPT controller resources. Therefore, analyzing the performance of the MPPT controller is necessary for actual insolation conditions in real weather environment to determine the optimum MPPT control period and the magnitude of the perturbation voltage. This study proposes an optimum MPPT control period that maximizes MPPT efficiency by measuring and analyzing actual insolation profiles in typical clear and cloudy weather in central Korea.

Periodically Poled BaTiO3: An Excellent Crystal for Terahertz Wave Generation by Cascaded Difference-frequency Generation

  • Li, Zhongyang;Yuan, Bin;Wang, Silei;Wang, Mengtao;Bing, Pibin
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.179-184
    • /
    • 2018
  • Terahertz (THz) wave generation by periodically poled $BaTiO_3$ (PPBT) with a quasi-phase-matching (QPM) scheme based on cascaded difference-frequency generation (DFG) is theoretically analyzed. The cascaded DFG processes comprise cascaded Stokes and anti-Stokes processes. The calculated results indicate that the cascaded Stokes processes are stronger than the cascaded anti-Stokes processes. Compared to a noncascaded Stokes process, THz intensities from $20^{th}$-order cascaded Stokes processes increase by a factor of 30. THz waves with a maximum intensity of $0.37MW/mm^2$ can be generated by $20^{th}$-order cascaded DFG processes when the optical intensity is $10MW/mm^2$, corresponding to a quantum conversion efficiency of 1033%. The high quantum conversion efficiency of 1033% exceeds the Manley-Rowe limit, which indicates that PPBT is an excellent crystal for THz wave generation via cascaded DFG.

Electrically Induced Damping Characteristics and a Relevant Requirement for the Maximum Power Generation in Piezoelectric Vibration Energy Harvesters (압전 진동 에너지 수확 장치의 전기 유발 감쇠 특성 및 최대 전력 발생 조건)

  • Kim, Jae Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.406-413
    • /
    • 2015
  • The piezoelectric coupling in piezoelectric vibration energy harvesters with load resistance induces electrical damping as well as increase in the system stiffness. Starting from analytically deriving the explicit relations through governing equations in the frequency domain, this work identifies the characteristics of the electrically induced damping mechanism and shows that the electrically induced damping serves as a structural hysteretic damping on condition that a piezoelectric vibration energy harvester is excited at its short-circuit resonant frequency and its load resistor is optimally impedance- matched at the same time. Finally, it is analytically verified that the equivalence of a mechanical and an electrically induced damping ratio is required for the maximum power generation at a load resistor, which was claimed in some literature.