• Title/Summary/Keyword: Maximum Material Condition

Search Result 445, Processing Time 0.023 seconds

Strength Evaluation of I-Type Connecting System on a Segmental Retaining Reinforced Wall Consideration the Backfill Settlement (배면침하 영향을 고려한 보강토 옹벽의 I형 연결시스템 강도 평가)

  • Moon, Hee-Jung;Han, Jung-Geun;Lee, Jong-Young;Cho, Sam-Deok;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • This paper describes the applicability of geogrid with I-type coupling system, which permits vertical displacement on back fill ground of the reinforced retaining wall and also minimize the damage between block and geogrid. The improvement of coupling method allowed the reduction of approximately 700 mm in the existing geogrid, and as a result, the tensile strength at the coupling joint showed approximately 53% of the maximum tensile strength. It is expected from the laboratory investigations that the coupling strength of geogrid with the combination of in-situ supporting material should be predominant in the field condition.

  • PDF

Brazier effect of single- and double-walled elastic tubes under pure bending

  • Sato, Motohiro;Ishiwata, Yuta
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.17-26
    • /
    • 2015
  • The cross sections of hollow cylindrical tubes ovalise under a pure bending condition, and this reduces their flexural stiffness as their curvatures increase. It is important to accurately evaluate this phenomenon, known as the 'Brazier effect', to understand the bending behaviour of the systems considered. However, if the tubes are supported by an elastic medium or foundation, the ovalisation displacements of their cross sections may decrease. From this point of view, the purpose of this research is to analytically investigate the bending characteristics of single- and double-walled elastic tubes contacted by an elastic material by considering the Brazier effect. The Brazier moment, which is the maximum moment-carrying capacity of the ovalised cross section, can be calculated by introducing the strain energy per unit length of the tube in terms of the degree of ovalisation for the tube and the curvature. The total strain energy of the double-walled system is the sum of the strain energies of the outer and inner tubes and that of the compliant core. Results are comparatively presented to show the variation in the degree of ovalisation and the Brazier moment for single- and double-walled tubes.

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.

Frequency Characteristics of Energy Harvester Using Piezoelectric Elements (압전식 에너지 수확기의 주파수 특성)

  • Yun, So-Nam;Kim, Dong-Gun;Ham, Young-Bog;Park, Jung-Ho;Jeong, Byeong-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3131-3135
    • /
    • 2008
  • This paper presents an energy harvester using piezoelectric elements that is a kind of generator which converts the mechanical power to the electric one using windmill system with many PZT actuators. In this study, low frequency characteristics of the cantilever-type piezoelectric actuator are experimentally investigated. Advantages of the cantilever use are to take a very large displacement and to improve the endurance of the PZT element. The material of cantilever is an aluminum and three kinds of cantilever of which size is $150[mm]{\times}20[mm]{\times}1.5[mm]$, $170[mm]{\times}20[mm]{\times}1.5[mm]$ and $190[mm]{\times}20[mm]{\times}1.5[mm]$ were experimented, respectively. The cantilever was fixed on the vibrator. The characteristics of frequency and mass variation of cantilever end part such as 0[g], 5[g], 10[g] are investigated. Maximum voltage was outputted at the condition of $150[mm]{\times}20[mm]{\times}1.5[mm]$ and 10[g] of mass. It was confirmed that the lower natural frequency at the larger length of cantilever and at the bigger of mass is gotten.

  • PDF

Characterization of Helicon Plasma by H$_2$ Gas Discharge and Fabrication of Diamond Tinn Films

  • Hyun, June-Won;Kim, Yong-Jin;Noh, Seung-Jeong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.12-17
    • /
    • 2000
  • Helicon waves were excited by a Nagoya type III antenna in magnetized plasma, and hydrogen and methane are fed through a Mass Flow Controller(MFC). We made a diagnosis of properties of helicon plasma by H$_2$gaseous discharge, and fabricated the diamond thin film. The maximum measured electron density was 1${\times}$10$\^$10/ cm$\^$-3/. Diamond films have been growo on (100) silicon substrate using the helicon plasma chemical vapor deposition. Diamond films were deposited at a pressure of 0.1 Torr, deposition time of 40~80 h, a substrate temperature of 700$^{\circ}C$ and methane concentrations of 0.5~2.5%. The growth characteristics were investigated by means of X-ray Photoelectron (XPS) and X-ray Diffraction(XRD), XRD and XPS analysis revealed that SiC was formed, and finally diamond particles were definitely deposited on it. With increasing deposition time, the thickness and crystallization of the daimond thin film increased, For this system the optimum condition of methane concentration was estimated to near to 1.5%.

  • PDF

Differences in Rectus Femoris Activation Among Skaters Wearing Fabric Speed Skating Suits with Different Levels of Compression

  • Moon, Young-Jin;Song, Joo-Ho;Hwang, Jinny
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • Objective: The purpose of this study was to investigate how different levels of compression exerted on the femoral region (known as the power zone) by coated fabric influences the activation and anaerobic capacity of the rectus femoris. Method: Three different levels of compression on the rectus femoris of the participants, namely 0% (normal condition), 9% (downsize), and 18% (downsize), were tested. The material of the fabric used in this study was nonfunctional polyurethane. Surface electromyography test was used to investigate the activation of the rectus femoris, while the isokinetic test (Cybex, $60^{\circ}/sec$) and Wingate test were used to investigate the maximum anaerobic power. Results: The different compression levels (0%, 9%, and 18%) did not improve the strength and anaerobic capacity of the knee extensor. However, knee flexor interfered with activation of the biceps femoris, which is an agonist for flexion, during 18% compression. Conclusion: Compression garments might improve the stretch shortening cycle effect at the time of eccentric contraction and during transition from eccentric to concentric contraction. Therefore, future studies are required to further investigate these findings.

High-Temperature Rupture of 5083-Al Alloy under Multiaxial Stress States

  • Kim Ho-Kyung;Chun Duk-Kyu;Kim Sung- Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1432-1440
    • /
    • 2005
  • High-temperature rupture behavior of 5083-Al alloy was tested for failure at 548K under multiaxial stress conditions: uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times were compared for uniaxial, biaxial, and triaxial stress conditions with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the von Mises effective and principal facet stresses give good correlation for the material investigated, and these parameters can predict creep life data under the multiaxial stress states with the rupture data obtained from specimens under the uniaxial stress. The results suggest that the creep rupture of this alloy under the testing condition is controlled by cavitation coupled with highly localized deformation process, such as grain boundary sliding. It is also conceivable that strain softening controls the highly localized deformation modes which result in cavitation damage in controlling rupture time of this alloy.

Bending analysis of doubly curved FGM sandwich rhombic conoids

  • Ansari, Md I.;Kumar, Ajay;Bandyopadhyaya, Ranja
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.469-483
    • /
    • 2019
  • In this paper, an improved mathematical model is presented for the bending analysis of doubly curved functionally graded material (FGM) sandwich rhombic conoids. The mathematical model includes expansion of Taylor's series up to the third degree in thickness coordinate and normal curvatures in in-plane displacement fields. The condition of zero-transverse shear strain at upper and lower surface of rhombic conoids is implemented in the present model. The newly introduced feature in the present mathematical model is the simultaneous inclusion of normal curvatures in deformation field and twist curvature in strain-displacement equations. This unique introduction permits the new 2D mathematical model to solve problems of moderately thick and deep doubly curved FGM sandwich rhombic conoids. The distinguishing feature of present shell from the other shells is that maximum transverse deflection does not occur at its center. The proposed new mathematical model is implemented in finite element code written in FORTRAN. The obtained numerical results are compared with the results available in the literature. Once validated, the current model was employed to solve numerous bending problems by varying different parameters like volume fraction indices, skew angles, boundary conditions, thickness scheme, and several geometric parameters.

Electrical fire simulation in control room of an AGN reactor

  • Jyung, Jae-Min;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.466-473
    • /
    • 2021
  • Fire protection is one of important issues to ensure safety and reduce risks of nuclear power plants (NPPs). While robust programs to shut down commercial reactors in any fires have been successfully maintained, the concept and associated regulatory requirements are constantly changing or strengthening by lessons learned from operating experiences and information all over the world. As part of this context, it is necessary not only to establish specific fire hazard assessment methods reflecting the characteristics of research reactors and educational reactors but also to make decisions based on advancement encompassing numerical analyses and experiments. The objectives of this study are to address fire simulation in the control room of an educational reactor and to discuss integrity of digital console in charge of main operation as well as analysis results through comparison. Three electrical fire scenarios were postulated and twenty-four thermal analyses were carried out taking into account two turbulence models, two cable materials and two ventilation conditions. Twelve supplementary thermal analyses and six subsequent structural analyses were also conducted for further examination on the temperature and heat flux of cable and von Mises stress of digital console, respectively. As consequences, effects of each parameter were quantified in detail and future applicability was briefly discussed. On the whole, higher profiles were obtained when Deardorff turbulence model was employed or polyvinyl chloride material and larger ventilation condition were considered. All the maximum values considered in this study met the allowable criteria so that safety action seems available by sustained integrity of the cable linked to digital console within operators' reaction time of 300 s.

Fatigue Life Prediction of Laminated Composite Materials by Multiple S-N Curves and Lamina-Level Failure Criteria

  • Hangil You;Dongwon Ha;Young Sik Joo;Gun Jin Yun
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.42-47
    • /
    • 2023
  • In this paper, we present a fatigue life prediction methodology using multiple S-N curves according to the different stress states of laminated composites. The stress states of the plies of the laminated composites are classified into five modes: longitudinal tension or compression and transverse tension or compression, and shear according to the maximum stress criterion and Puck's criterion with a scaling factor K. This methodology has advantages in computational cost, and it can also consider microstructural characteristics of the composites by applying different S-N curves. The S-N curves for the fatigue analysis are obtained by experimental fatigue test. The proposed methodol is implemented into commercial software, ABAQUS user material subroutine and therefore, the fatigue analysis is conducted using the structural analysis results. The finite element (FE) simulation results are presented for unidirectional composites with and without open-hole. The FE simulation results show that the stress condition is different depending on the fiber orientation of the unidirectional composite, so the fatigue life is calculated with different S-N curves.