• Title/Summary/Keyword: Maximum Likelihood Decoding

Search Result 92, Processing Time 0.027 seconds

Design of New Closed-Loop Spatial Multiplexing System Using Linear Precoder (선형 선부호기를 이용한 새로운 폐루프 공간 다중화 시스템 설계)

  • Chae, Chang-Hyeon;Choi, Dae-Won;Jung, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.44-49
    • /
    • 2008
  • Recently, a so called orthogonal spatial multiplexing(OSM) scheme was presented which allows simple maximum likelihood decoding at the receiver with single phase feedback In this paper, by serially concatenating this scheme by a linear precoder, a new closed-loop SM scheme is proposed for two transmit arid two receive antennas. By computer simulation results, we show that the proposed scheme outperforms the conventional SM and OSM. For the proposed code, we also propose a new simple decoding algorithm which leads to a greatly reduced decoding complexity compared with the ML receiver without any loss of error performance.

Low-Complexity Maximum-Likelihood Decoder for V-BLAST Architecture

  • Le, Minh-Tuan;Pham, Van-Su;Mai, Linh;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.126-130
    • /
    • 2005
  • In this paper, a low-complexity maximum-likelihood (ML) decoder based on QR decomposition, called real-valued LCMLDec decoder or RVLCMLDec for short, is proposed for the Vertical Bell Labs Layered Space-Time (V-BLAST) architecture, a promising candidate for providing high data rates in future fixed wireless communication systems [1]. Computer simulations, in comparison with other detection techniques, show that the proposed decoder is capable of providingthe V-BLAST schemes with ML performance at low detection complexity.

  • PDF

Simplified Maximum-Likelihood Decoder for V-BLAST Architecture

  • Le Minh-Tuan;Pham Van-Su;Mai Linh;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.76-79
    • /
    • 2005
  • In this paper, a low-complexity maximum-likelihood (ML) decoder based on QR decomposition, called real-valued LCMLDec decoder or RVLCMLDec for short, is proposed for the Vertical Bell Labs Layered Space-Time (V-BLAST) architecture, a promising candidate for providing high data rates in future fixed wireless communication systems [1]. Computer simulations, in comparison with other detection techniques, show that the proposed decoder is capable of providing the V­BLAST schemes with ML performance at low detection complexity

Performance for a Space-time Coded DS-CDMA system with arrival time difference in a Rayleigh fading channel (도착시간차가 존재하는 레일레이 폐이딩 채널에서 시공간부호화된 DS-CDMA 시스템의 성능)

  • 이주현;이재홍
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.9-12
    • /
    • 2001
  • In this paper, the natural space-time coding is applied for a DS-CDMA system with multiple transmit/receive antennas in a Rayleigh fading channel. With difference of arrival times from transmit antennas a modified maximum likelihood (ML) decoding algorithm is proposed for the space-time coded DS-CDMA system. The proposed decoding algorithm performs ML decoding over the transition of two consecutive branches by using a modified branch metric with the partial autocorrelation. By simulation, it is shown that the proposed decoding algorithm achieves significant performance improvement over the ML decoding algorithm without the modified branch metric.

  • PDF

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

  • Patil, Gajanan R.;Kokate, Vishwanath K.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1029-1042
    • /
    • 2017
  • A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is determined via sphere decoding. The performance of the new scheme is studied through simulation in terms of the bit error rate (BER). The results show that the proposed channel estimation has comparable performance and better computational complexity over the existing semi-blind channel estimation (SBCE) method.

Efficient Decoding Algorithm for Rate-2, $2{\times}2$ Space-Time Codes (Rate-2인 $2{\times}2$ 시공간 부호를 위한 효율적인 복호 알고리즘)

  • Kim, Jeong-Chang;Cheun, Kyung-Whoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.9-14
    • /
    • 2009
  • Recently, a rate-2, $2{\times}2$ space-time code with simple ML decoding has been designed. Though the simple ML decoding algorithm does reduce the ML decoding complexity, there is still need for improvement. In this paper, we propose an efficient decoding algorithm for the rate-2, $2{\times}2$ space-time code using interference cancellation techniques with performance virtually identical to that of ML decoding. Also, the decoding complexity of the proposed algorithm is significantly reduced compared to the conventional simple ML decoding, especially for large modulation orders.

A New Iterative LT Decoding Algorithm for Binary and Nonbinary Galois Fields

  • Mao, Yuexin;Huang, Jie;Wang, Bing;Huang, Jianzhong;Zhou, Wei;Zhou, Shengli
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.411-421
    • /
    • 2013
  • Digital fountain codes are record-breaking codes for erasure channels. They have many potential applications in both wired and wireless communications. Most existing digital fountain codes operate over binary fields using an iterative belief-propagation (BP) decoding algorithm. In this paper, we propose a new iterative decoding algorithm for both binary and nonbinary fields. The basic form of our proposed algorithm considers both degree-1 and degree-2 check nodes (instead of only degree-1 check nodes as in the original BP decoding scheme), and has linear complexity. Extensive simulation demonstrates that it outperforms the original BP decoding scheme, especially for a small number of source packets. The enhanced form of the proposed algorithm combines the basic form of the algorithm and a guess-based algorithm to further improve the decoding performance. Simulation results demonstrate that it can provide better decoding performance than the guess-based algorithm with fewer guesses, and can achieve decoding performance close to that of the maximum likelihood decoder at a much lower decoding complexity. Last, we show that our nonbinary scheme has the potential to outperform the binary scheme when choosing suitable degree distributions, and furthermore it is insensitive to the size of the Galois field.

Implementation-Friendly QRM-MLD Using Trellis-Structure Based on Viterbi Algorithm

  • Choi, Sang-Ho;Heo, Jun;Ko, Young-Chai
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • The maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD) has been presented as a suboptimum multiple-input multiple-output (MIMO) detection scheme which can provide almost the same performance as the optimum maximum likelihood (ML) MIMO detection scheme but with the reduced complexity. However, due to the lack of parallelism and the regularity in the decoding structure, the conventional QRM-MLD which uses the tree-structure still has very high complexity for the very large scale integration (VLSI) implementation. In this paper, we modify the tree-structure of conventional QRM-MLD into trellis-structure in order to obtain high operational parallelism and regularity and then apply the Viterbi algorithm to the QRM-MLD to ease the burden of the VLSI implementation.We show from our selected numerical examples that, by using the QRM-MLD with our proposed trellis-structure, we can reduce the complexity significantly compared to the tree-structure based QRM-MLD while the performance degradation of our proposed scheme is negligible.

Improvement of the Sphere Decoding Complexity through an Adaptive OSIC-SD System (Adaptive OSIC-SD 시스템을 통한 SD 복호기 복잡도 개선)

  • Portugal, Sherlie;Yoon, Gil-Sang;Seo, Chang-Woo;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.13-18
    • /
    • 2011
  • Sphere Decoding (SD) is a decoding technique able to achieve the Maximum Likelihood (ML) performance in fading environments; nevertheless, the main disadvantage of this technique is its high complexity, especially in poor channel conditions. In this paper, we present an adaptive hybrid algorithm which reduces the conventional Sphere Decoder's complexity and keeps the ML performance. The system called Adaptive OSIC-SD modifies its operation based on Signal to Noise Ratio (SNR) information and achieves an optimal performance in terms of Bit Error Rate (BER) and complexity. Through simulations, we probe that the proposed system maintains almost the same bit error rate performance of the conventional SD, and exhibits a lower, quasi-constant complexity.

Design of New Quasi-Orthogonal Space-Time Block Code with Minimum Decoding Complexity (최소 복호 복잡도를 갖는 새로운 준직교 시중간블록부호 설계)

  • Chae, Chang-Hyeon;Choi, Dae-Won;Jung, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1219-1225
    • /
    • 2007
  • In this paper, we propose a new quasi-orthogonal space-time block code(QO-STBC) achieving full rate and full diversity for general QAM and quasi-static Rayleigh fading channels with four transmit antennas. This code possesses the quasi orthogonal property like the conventional minimum decoding complexity QO-STBC(MDC-QO-STBC), which allows independently a maximum likelihood(ML) decoding to only require joint detection of two real symbols. By computer simulation results, we show that the proposed code exhibits the identical BER performance with the existing MDC-QO-STBC. However, the proposed code has an advantage in the transceiver implementation since the original coding scheme may be modified so that increases of peak-to-average power ratio occur at only two transmit antennas, but the MDC-QO-STBC does at all of transmit antennas.