• Title/Summary/Keyword: Maximum Likelihood Classification

Search Result 160, Processing Time 0.019 seconds

Performance Comparision of Multilayer Perceptron Nueral Network and Maximum Likelihood Classifier for Category Classification (카테고리분류를 위한 다층퍼셉트론 신경회로망과 최대유사법의 성능비교)

  • Lim, Tae-Hun;Seo, Yong-Su
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.137-147
    • /
    • 1996
  • In this paper, the performances between maximum likelihood classifier based on statistical classification and multilayer perceptrons based on neural network approaches were compared and evaluated Experimental results from both neural network method and statistical method are presented. In addition, the nature of two different approches are analyzed based on the experiments.

  • PDF

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF

Development of Classification Method for the Remote Sensing Digital Image Using Canonical Correlation Analysis (정준상관분석을 이용한 원격탐사 수치화상 분류기법의 개발 : 무감독분류기법과 정준상관분석의 통합 알고리즘)

  • Kim, Yong-Il;Kim, Dong-Hyun;Park, Min-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.181-193
    • /
    • 1996
  • A new technique for land cover classification which applies digital image pre-classified by unsupervised classification technique, clustering, to Canonical Correlation Analysis(CCA) was proposed in this paper. Compared with maximum likelihood classification, the proposed technique had a good flexibility in selecting training areas. This implies that any selected position of training areas has few effects on classification results. Land cover of each cluster designated by CCA after clustering is able to be used as prior information for maximum likelihood classification. In case that the same training areas are used, accuracy of classification using Canonical Correlation Analysis after cluster analysis is better than that of maximum likelihood classification. Therefore, a new technique proposed in this study will be able to be put to practical use. Moreover this will play an important role in the construction of GIS database

  • PDF

A Study on the Classification for Satellite Images using Hybrid Method (하이브리드 분류기법을 이용한 위성영상의 분류에 관한 연구)

  • Jeon, Young-Joon;Kim, Jin-Il
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.159-168
    • /
    • 2004
  • This paper presents hybrid classification method to improve the performance of satellite images classification by combining Bayesian maximum likelihood classifier, ISODATA clustering and fuzzy C-Means algorithm. In this paper, the training data of each class were generated by separating the spectral signature using ISODATA clustering. We can classify according to pixel's membership grade followed by cluster center of fuzzy C-Means algorithm as the mean value of training data for each class. Bayesian maximum likelihood classifier is performed with prior probability by result of fuzzy C-Means classification. The results shows that proposed method could improve performance of classification method and also perform classification with no concern about spectral signature of the training data. The proposed method Is applied to a Landsat TM satellite image for the verifying test.

A study on classification accuracy improvements using orthogonal summation of posterior probabilities (사후확률 결합에 의한 분류정확도 향상에 관한 연구)

  • 정재준
    • Spatial Information Research
    • /
    • v.12 no.1
    • /
    • pp.111-125
    • /
    • 2004
  • Improvements of classification accuracy are main issues in satellite image classification. Considering the facts that multiple images in the same area are available, there are needs on researches aiming improvements of classification accuracy using multiple data sets. In this study, orthogonal summation method of Dempster-Shafer theory (theory of evidence) is proposed as a multiple imagery classification method and posterior probabilities and classification uncertainty are used in calculation process. Accuracies of the proposed method are higher than conventional classification methods, maximum likelihood classification(MLC) of each data and MLC of merged data sets, which can be certified through statistical tests of mean difference.

  • PDF

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

Effectiveness of Using the TIR Band in Landsat 8 Image Classification

  • Lee, Mi Hee;Lee, Soo Bong;Kim, Yongmin;Sa, Jiwon;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.203-209
    • /
    • 2015
  • This paper discusses the effectiveness of using Landsat 8 TIR (Thermal Infrared) band images to improve the accuracy of landuse/landcover classification of urban areas. According to classification results for the study area using diverse band combinations, the classification accuracy using an image fusion process in which the TIR band is added to the visible and near infrared band was improved by 4.0%, compared to that using a band combination that does not consider the TIR band. For urban area landuse/landcover classification in particular, the producer’s accuracy and user’s accuracy values were improved by 10.2% and 3.8%, respectively. When MLC (Maximum Likelihood Classification), which is commonly applied to remote sensing images, was used, the TIR band images helped obtain a higher discriminant analysis in landuse/landcover classification.

COMPOUNDED METHOD FOR LAND COVERING CLASSIFICATION BASED ON MULTI-RESOLUTION SATELLITE DATA

  • HE WENJU;QIN HUA;SUN WEIDONG
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.116-119
    • /
    • 2005
  • As to the synthetical estimation of land covering parameters or the compounded land covering classification for multi-resolution satellite data, former researches mainly adopted linear or nonlinear regression models to describe the regression relationship of land covering parameters caused by the degradation of spatial resolution, in order to improve the retrieval accuracy of global land covering parameters based on 1;he lower resolution satellite data. However, these methods can't authentically represent the complementary characteristics of spatial resolutions among different satellite data at arithmetic level. To resolve the problem above, a new compounded land covering classification method at arithmetic level for multi-resolution satellite data is proposed in this .paper. Firstly, on the basis of unsupervised clustering analysis of the higher resolution satellite data, the likelihood distribution scatterplot of each cover type is obtained according to multiple-to-single spatial correspondence between the higher and lower resolution satellite data in some local test regions, then Parzen window approach is adopted to derive the real likelihood functions from the scatterplots, and finally the likelihood functions are extended from the local test regions to the full covering area of the lower resolution satellite data and the global covering area of the lower resolution satellite is classified under the maximum likelihood rule. Some experimental results indicate that this proposed compounded method can improve the classification accuracy of large-scale lower resolution satellite data with the support of some local-area higher resolution satellite data.

  • PDF

A Neuro-Fuzzy Model Approach for the Land Cover Classification

  • Han, Jong-Gyu;Chi, Kwang-Hoon;Suh, Jae-Young
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.122-127
    • /
    • 1998
  • This paper presents the neuro-fuzzy classifier derived from the generic model of a 3-layer fuzzy perceptron and developed the classification software based on the neuro-fuzzl model. Also, a comparison of the neuro-fuzzy and maximum-likelihood classifiers is presented in this paper. The Airborne Multispectral Scanner(AMS) imagery of Tae-Duk Science Complex Town were used for this comparison. The neuro-fuzzy classifier was more considerably accurate in the mixed composition area like "bare soil" , "dried grass" and "coniferous tree", however, the "cement road" and "asphalt road" classified more correctly with the maximum-likelihood classifier than the neuro-fuzzy classifier. Thus, the neuro-fuzzy model can be used to classify the mixed composition area like the natural environment of korea peninsula. From this research we conclude that the neuro-fuzzy classifier was superior in suppression of mixed pixel classification errors, and more robust to training site heterogeneity and the use of class labels for land use that are mixtures of land cover signatures.

  • PDF

Fuzzy Classification Using EM Algorithm

  • Lee Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.675-677
    • /
    • 2005
  • This study proposes a fuzzy classification using EM algorithm. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes.

  • PDF