• Title/Summary/Keyword: Maximum Hardness

Search Result 695, Processing Time 0.035 seconds

Effect of Hot-stamping Heat Treatment on Microstructure and Hardness in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강의 TWB 레이저 용접부 미세조직과 경도에 미치는 핫 스탬핑 열처리의 영향)

  • Jung, Byung-Hun;Kong, Jong-Pan;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.224-232
    • /
    • 2012
  • In this study, the effect of hot-stamping heat treatment on the microstructure and hardness of TWB(Tailor Welded Blank) laser joints in Al-Si-coated boron steel and Zn-coated DP(Dual Phase)590 steel was investigated. In the TWB joints without heat treatment, hardness profiles showed local hardness deviation near the fusion zone. However, there was no hardness deviation in the heat treated specimen and its hardness was higher than that of the one without the heat treatment, due to a fully martensite microstructure. In the TWB joints of both the boron and DP steels, the maximum hardnesses were observed at the HAZ(Heat Affected Zone) near the base metal, and the hardness decreased gradually to the base metal. In the heat treated joints, the hardnesses of the HAZ and the base metal of the boron steel side were similar to the maximum hardness of the weld, while those of the HAZ and the base metal of the DP steel side were higher than the maximum hardness.

The Influence of Midsole Hardness of Running Shoes on Shoes Flex Angle during Running (달리기 시 운동화 중저의 경도가 신발굴곡각도의 크기에 미치는 영향)

  • Mok, Seung-Han;Kwak, Chang-Su;Kwon, Oh-Bok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.85-103
    • /
    • 2004
  • This study was conducted to determine what effects would the midsole hardness of running shoes have on shoe flex angle and maximum propulsive force. Furthermore, the relationship between the shoes flex angle and maximum propulsive force was elucidated in order to provide basic data for developing running shoes to improve sports performances and prevent injuries. The subjects employed in the study were 10 college students majoring in physical education who did not have lower limbs injuries for the last one year and whose running pattern was rearfoot strike pattern of normal foot. The shoes used in this study had 3different hardness, shore A 40(soft), 50(medium) and 60(hard). The subjects were asked to run at a speed of $4{\pm}0.08m/sec$, and their movements were videotaped with 2 S-VHS video-cameras and measured with a force platform. And the following results were obtained after analyzing and comparing the variables. 1. Although the minimum angle of shoes flex angle was estimated to appear at SFA4, it appeared at SFA2 except in those shoes with the hardness of 40. 2. The minimum angle of shoes flex angle was $145.1^{\circ}$ with barefoot. Among the shoes with different hardness, it was the smallest when the hardness was 50 at $149.9^{\circ}$. The time to the minimum angle was 70.7% of the total ground contact time. 3. Maximum propulsive force according to midsole hardness was the largest when the hardness was 50 at $1913.9{\pm}184.3N$. There was a low correlation between maximum propulsive force and shoes flex angle.

Hardness Distribution and Microstructures of Electric Resistance Spot Welded 1GPa Grade Dual Phase Steel (1GPa급 DP강 전기저항점용접부의 경도분포와 미세조직의 상관관계)

  • Na, Hye-Sung;Kong, Jong-Pan;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.76-80
    • /
    • 2012
  • In this study, the effect of the welding current on the hardness characteristics and microstructure in the resistance spot welding of 1GPa grade cold-rolled DP steel was investigated, Also, correlation between the hardness and microstructure was discussed. In spite of the change in the welding current, the hardness distributions near weld was similar. the hardness in the HAZ and the fusion zone was higher than that of the base metal and the hardness in the fusion zone was variated with the location. Especially, the hardness of HAZ adjacent to the base metal showed maximum value, and softening zone in the base metal adjacent to HAZ was found. With the increasing of welding current, there were no difference in maximum hardness and average hardness in the fusion zone were, but the hardness of the softening zone reduced. The difference in the hardness in each location of weld due to grain size of prior austenite. The softening of the base metal occurred by tempering of the martensite.

Effect of Sintering Temperature, Heat Treatment and Tempering on Hardness of SH737-2Cu-0.9C Sintered Samples

  • Anand, S.;Verma, N.;Upadhyaya, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.555-556
    • /
    • 2006
  • The study examines hardness pattern of SH737-2Cu-.9C samples transient liquid phase sintered at different temperatures viz. $1120^{\circ}C$, $1180^{\circ}C$ and $1250^{\circ}C$, heat treated by various methods and then tempered at different temperatures. Sintered samples were characterized for density and densification parameter, and austenitized at $900^{\circ}C$, subsequently cooled by four different methods viz. annealing, normalizing, oil and brine quenching. Hardness pattern was found minimum for air cooled and maximum for brine quenched, and samples sintered at $1250^{\circ}C$ had relatively higher hardness. The O.Q and B.Q samples were then tempered at $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$ and $700^{\circ}C$. Hardness pattern typically showed secondary hardness taking place, with maximum around $600^{\circ}C$.

  • PDF

An Effect Analysis of Rearfoot Movement and Impact force by Different Design of Running Shoes Hardness (런닝화의 경도 차이가 후족 제어 및 충격력에 미치는 영향 분석)

  • Lee Dong-Choon;Lee Woo-Chang
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.291-296
    • /
    • 2002
  • The midsole hardness of athletic footwear affects capability of absorbing impact shock and controls rearfoot movement during running and walking. The prior studies were focused on examining the proper hardness of footwear for rearfoot movement or to finding effective hardness for absorbing impact shock. The displacements of maximal Achilles tendon angle described a amount of pronation motion is decreased when medial hardness of midsole is large more than lateral. Increasing hardness of footwear midsole are effected to reduce maximum and intial pronation angle, but declined the ability of impact shock during heelstrike. For determination of effectiveness hardness of midsole, therefore, the study that makes a compromise between rearfoot movement and absorbing impact during footstrike must be performed. The purpose of this study is to examine quantitative values of rearfoot control and absorbing impact shock with different hardness of medial and lateral midsole on heel portion. The results are useful to define biomechanical hardness of midsole for developing running shoes. As variable for impact shock, accelerations onto shank and knee are measured during 4 running speeds (5, 7, 9, 11km/h). Also, maximum and $10\%$ pronation angle (Achilles tendon angle) were measured using high-speed camera.

  • PDF

A Study on the Heat Treatment Effect of SCM Series Gear (SCM계 기어의 열처리 효과에 관한 연구)

  • Ahn, Min-Ju;Ahn, In-Hyo;Zhang, Qi;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.84-89
    • /
    • 2011
  • This paper studied the carburizing of chromium molybdenum steel which the heat treatment effect of gear geometric tolerance, OPD, Runout, the surface hardness, the maximum hardness, the core hardness and the bending fatigue strength were investigated. Firstly, the deformation is observed, and the results of circularity, squareness, OPD and Runout of SCM822, SCM425, and SCM415 are obtained in order. Secondly, in order to investigate the gear hardness, the surface hardness, the maximum hardness and the core hardness of SCM822, SCM425, and SCM415 are obtained; and the surface hardness of SCM822 is about 10% higher than SCM415's, and about 3% higher than SCM425's. Thirdly, the fatigue strength of SCM822 is about 10% higher than SCM415's, and about 7% higher than SCM425's in the fatigue test results. At last, for the purpose of the minimum deformation of heat treatment, and also the improvement of fatigue strength, the best gear material is SCM822 in this test.

Analysis of Kernel Hardness of Korean Wheat Cultivars

  • Hong, Byung-Hee;Park, Chul-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.78-85
    • /
    • 1999
  • To investigate kernel hardness, a compression test which is widely used to measure the hardness of individual kernels as a physical testing method was made simultaneously with the measurement of friabilin (15KDa) which is strongly associated with kernel hardness and was recently developed as a biochemical marker for evaluating kernel hardness in 79 Korean wheat varieties and experimental lines. With the scattered diagram based on the principal component analysis from the parameters of the compression test, 79 Korean wheat varieties were classified into three groups based on the principal component analysis. Since conventional methods required large amount of flour samples for analysis of friabilin due to the relatively small amount of friabilin in wheat kernels, those methods had limitations for quality prediction in wheat breeding programs. An extraction of friabilin from the starch of a single kernel through cesium chloride gradient centrifugation was successful in this experiment. Among 79 Korean wheat varieties and experimental lines 50 lines (63.3%) exhibited a friabilin band and 29 lines (36.7%) did not show a friabilin band. In this study, lines that contained high maximum force and the lower ratio of minimum force to maximum force showed the absence of the friabilin band. Identification of friabilin, which is the product of a major gene, could be applied in the screening procedures of kernel hardness. The single kernel analysis system for friabilin was found to be an easy, simple and effective screening method for early generation materials in a wheat breeding program for quality improvement.

  • PDF

Deposition Behaviors of Ti-Si-N Thin Films by RF Plasma-Enhanced Chemical Vapor Deposition. (RF-PECVD법에 의한 Ti-Si-N 박막의 증착거동)

  • 이응안;이윤복;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.211-217
    • /
    • 2002
  • Ti-Si-N films were deposited onto WC-Co substrate by a RF-PECVD technique. The deposition behaviors of Ti-Si-N films were investigated by varying the deposition temperature, RF power, and reaction gas ratio (Mx). Ti-Si-N films deposited at 500, 180W, and Mx 60% had a maximum hardness value of 38GPa. The microstructure of films with a maximum hardness was revealed to be a nanocomposite of TiN crystallites penetrated by amorphous silicon nitride phase by HRTEM analyses. The microstructure of maximum hardness with Si content (10 at.%) was revealed to be a nanocomposite of TiN crystallites penetrated by amorphous silicon nitride phase, but to have partly aligned structure of TiN and some inhomogeniety in distribution. and At above 10 at.% Si content, TiN crystallite became finer and more isotropic also thickness of amorphous silicon nitride phase increased at microstructure.

A study on Mechanical and Fatigue Properties of Spheroidal Graphite Cast Iron (구상흑연주철의 기계적 성질및 피로특성에 관한 연구)

  • Park, No-Gwang;Kim, Chang-Ju;Jun, Eui-Jin
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.83-93
    • /
    • 1982
  • The influence of different heat treatment conditions on microstructure, mechanical and fatigue properties of Spheroidal Graphite cast Iron with 0.4-0.6% Mn was investigated. 1) Maximum tensile strength was arrived by tempering at about $450^{\circ}C$after quenching. Tempering at higher than $600^{\circ}C$ was changed martensitic structure to ferritic structure and secondary graphites were precipitated. 2) The relationship between matrix hardness and total hardness of the specimens are as following. [HB]$T$=0.7[HB] [HB]$M$+35 Maximum tensile strength was arrived at the total hardness of HB400-450. 3) Endurance ratio decreases with increasing total hardness, and fatigue limits can be presumed from as following. $\sigmaf$=$\sigmat$

  • PDF

Ultrasonographic evaluation of the masseter muscle in patients with temporomandibular joint degeneration

  • Busra Arikan;Numan Dedeoglu;Aydin Keskinruzgar
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • Purpose: Sonographic elastography can be used to evaluate the hardness of muscle tissue through the application of compression. Strain elastography gauges hardness through the comparison of echo sets before and after compression. This study utilized ultrasonography to measure the thickness and hardness of the masseter muscle in individuals with temporomandibular joint(TMJ) osteoarthritis. Materials and Methods: This study included 40 patients who presented with joint pain and were diagnosed with TMJ osteoarthritis via diagnostic cone-beam computed tomography, along with 40 healthy individuals. The thickness and hardness of each individual's masseter muscle were evaluated both at rest and at maximum bite using ultrasonography. The Mann-Whitney U test and the chi-square test were employed for statistical analysis, with the significance level set at P<0.05. Results: The mean thickness of the resting masseter muscle was 0.91 cm in patients with osteoarthritis, versus 1.00 cm in healthy individuals. The mean thickness of the masseter muscle at maximum bite was 1.28 cm in osteoarthritis patients and 1.36 cm in healthy individuals. The mean masseter elasticity index ratio at maximum bite was 4.51 in patients with osteoarthritis and 3.16 in healthy controls. Significant differences were observed between patients with osteoarthritis and healthy controls in both the masseter muscle thickness and the masseter elasticity index ratio, at rest and at maximum bite (P<0.05). Conclusion: The thickness of the masseter muscle in patients with TMJ osteoarthritis was less than that in healthy controls. Additionally, the hardness of the masseter muscle was greater in patients with TMJ osteoarthritis.