• Title/Summary/Keyword: Maximum Equivalent Stress

Search Result 266, Processing Time 0.03 seconds

Structural Analysis of Bike Handle Installed with Smart Phone Depository (스마트폰 거치대가 설치된 자전거 핸들의 구조 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study investigates stress and deformation due to static and dynamic vibration analysis about various types of bike handles installed with smart phone depositories. When force is applied on the side of handle at the models of type 1, 2, 3 and 4, the maximum equivalent stress is highest at type 2. The stress or deformation becomes lowest among these 4 model types. At vibration analysis, type 1 becomes safest within the range of 500Hz and type 3 becomes stable within the range of 100Hz. The result of this study can be applied with the design of bike handle installed with smart phone depository. The damage or deformation due to vibration can be prevented when the bike falls down. This result can be widely utilized to investigate and predict the durability.

Thermo-Mechanical Stress Analysis of Power Generation Turbine Blades (발전용 터빈 블레이드의 열기계 응력 해석)

  • Kim, Jong-Un;Lee, Soo-Yong;Park, Jung-Sun;Lee, An-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.84-91
    • /
    • 2002
  • Temperature distribution in the GTD111 turbine blade used in power plaints is calculated by heat transfer analysis. Linear stress analysis of the turbine blade is also carried out under thermal loads and centrifugal forces. The numerical results of steady state heat transfer analysis slow that high temperature distribution occurs at the leading edge and tip section of the blade. The thermal stress result indicates that the equivalent stress at the tip of the pressure surface is higher than other sections of the blade. Maximum centrifugal stresses without the thermal effect occurs at the front of the fir tree. From the thermal-centrifugal stress analysis, maximum equivalent stress occurs at the fir tree. Stresses applied by the thermal loads and centrifugal forces are less than the yield stress. The GTD111 turbine blade is safe to be used in the power plants.

Convergence Technique Study of Model Tie Rod End by Configuration through Simulation Analysis (시뮬레이션 해석을 통한 형상 별 타이로드 엔드 모델의 융합 기술 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.161-166
    • /
    • 2016
  • Deformation, stress and fatigue life due to the configuration of tie rod end are investigated in this study. Tie rod ends with the total three kinds of configurations are modelled with three dimensions through CATIA program and the simulation analysis is carried out with the ANSYS finite element analysis program. There are the models of A, B and C by the configuration of the rod end. As this study result, maximum deformation, maximum equivalent stress and maximum fatigue life of A type model are shown to be 0.0614mm, 160.27MPa and 336,930cycles respectively. And maximum deformation, maximum equivalent stress and maximum fatigue life of B type model are shown to be 0.0648mm, 90.889MPa and 1,171,000cycles respectively. Maximum deformation, maximum equivalent stree and maximum fatigue life of C type model are also shown to be 0.0402mm, 84.794MPa and 20,000,000cycles respectively. The durability of the models of tie rod ends through the values of this result could be estimated and the data for the design and development of more improved tie rod end could be secured. And it is possible to be grafted onto the convergence technique at design and be shown as the esthetic sense.

Study on Structural Analysis of Front Axle (전방 차축의 구조해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.65-71
    • /
    • 2011
  • This study analyzes about front axle through the analyses of stress, fatigue and vibration. Maximum equivalent stress is shown with the frequency of 60Hz in case of the harmonic vibration analysis applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-2{\times}10^5MPa$ and the amplitude stress of 0 to $-2{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of front axle by investigating prevention and durability against its damage.

Structural Safety Analysis According to the Shape of Door Impact Bar (도어 충격봉의 형상에 따른 구조 안전 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.21-25
    • /
    • 2012
  • In this study, the safest model can be selected by the simulation result of structural safety analysis according to the shape of impact bar affected at side door of automobile. The open sectional model of semicircle type has the lowest deformation and stress among 4 kinds of models. As the weight of this model has 30% in comparison with other models, it becomes most economical and stable. As the open sectional model of cap type the highest deformation and stress among 4 kinds of models, it becomes weakest. The closed models with circular and rectangular types has the stress far lower than cap type. The maximum deformation is shown at the center part of impact bar but the maximum stress occurs at the joint part between impact bar and frame.

Study on Durability by Structural Analysis of Bulldozer (불도저의 구조해석에 의한 내구성 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.239-244
    • /
    • 2011
  • This study analyzes the behaviors on stress, fatigue and vibration about bulldozer in operation. Maximum equivalent stress is shown with the frequency of 100 Hz in case of the harmonic vibration analysis applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to -105MPa and the amplitude stress of 0 to $1.617{\times}105MPa$, the possibility of maximum damage becomes 3.23%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of bulldozer by investigating prevention and durability against its damage.

Optimization of Pin-hole Location to Minimize Stress Concentration around Hole in Rotating Disc under Centrifugal Force (원심력을 받는 회전원판내 원공주위 응력집중 최소화를 위한 핀홀위치 최적화)

  • 한동섭;한근조;김태형;심재준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.131-138
    • /
    • 2004
  • The objective of this paper is to decide optimal location of a pin-hole to minimize stress concentration around the hole in a rotating disc. The focus of this investigation is to evaluate the effect of pin-hole on stress distribution around the hole using optimum design technique and finite element analysis. Design variables are the radial and the angular location of pin-hole from center of the hole and objective function is the maximum stress around hole in a rotating disc. Using first order method of optimization technique, we found that the maximum equivalent stress around the hole with optimized pin-hole could be reduced by 15.1% compared to that without pin-hole.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN ROOT-END RESECTED TEETH (유한요소법을 이용한 치근단절제술후 근첨의 응력분포에 관한 연구)

  • Lee, Se-Joon;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.163-174
    • /
    • 1998
  • The purpose of this study is to evaluate the distribution of stress in the root end resected teeth. The finite element method was used to compare stresses along the root and retrograde filling material in seven two-dimensional models of mandibular 2nd premolar. Each model was endodontic treatment and gold crown' restoration. Each model divided with amagam core restoration or gold casting post restoration. Thus each model divided with shape of root end resection, depth of retropreparation and exposure length of root in the bony cavity. The seven models were classified as in the table 1 below. A load of 500N was applied $45^{\circ}$ diagonally on the lingual slope of the buccal cusp. These mode were analyzed with two dimensional finite element methods. The results of this study were as follows : 1. The maximum tensile stress along the inner canal wall was shown on the model 7. 2. When the model 1 was compared with the model 5, the maximum tensile stress along the inner canal wall showed the model 1. 3. Less equivalent stress was shown on the model 6 and more equivalent stress was shown on the model 4. 4. More shear stress was shown on the retrograde filling material of the model 7. 5. The models with increased length of exposed root in the bony cavity demonstrated a gradual increase to the tensile stress in X direction which occurred approximately a boundary between the bone and exposed root in' the bony cavity. 6. The model which had a case of matching the apex of post and a boundary between the bone and exposed root in the bony cavity demonstrated more increase tensile stress in X direction than other models.

  • PDF

Vibration Analysis at Bike Frame Fork (자전거 프레임 포크에서의 진동 해석)

  • Cho, Jae Ung;Han, Moon Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • This study investigates structural and vibration analyses for three types of bike frame fork models. As long as the maximum equivalent stresses of these models are lower than the yield stress, the three models are considered to be safe structurally. Type 3, with a maximum equivalent stress of 169.23 MPa, has the lowest stress among the three models and the strongest strength. Types 1, 2 and 3 have natural frequencies lower than 270 Hz. Type 3, with a critical frequency of 118 Hz, has the best durability under vibration among the three models. In order to decrease the vibration transmitted to a bike rider riding on a rough road, the impact due to vibration can be relieved by selecting a Type 3 model from among the three models. The results of this study can be effectively utilized for the design of a bike frame fork as this allows the anticipation and prevention of damage caused by durability issues.

A Study on Structural Safety and Fatigue Failure of End Mill (엔드밀의 구조적 안전과 피로 파단에 대한 연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.3
    • /
    • pp.17-22
    • /
    • 2014
  • The stress between work piece and end mill at the use of end mill at machining and the structural deformation due to the and the pressure are investigated by simulation analysis of three end mill models in this study. These results are achieved with structural and fatigue analyses. Model 1 has the deformation less than model 2 or model 3. As the maximum equivalent stress of model 1 is shown to become the least among all models, model 1 can endure the highest load by comparing with other models. It is useful to estimate the damage prevention and the durability by applying this study result into the design of end mill.