Proceedings of the National Institute of Ecology of the Republic of Korea
/
제4권3호
/
pp.115-126
/
2023
Understanding the carrying capacity of a habitat is crucial for effectively managing populations of wild boars (Sus scrofa), which are designated as harmful wild animal species in national parks. Carrying capacity refers to the maximum population size supported by a park's environmental conditions. This study aimed to estimate the appropriate wild boar population size by integrating population characteristics and habitat suitability for wild boars in the Bukhansan National Park using the HexSim program. Population characteristics included age, survival, reproduction, and movement. Habitat suitability, which reflects prospecting and resource acquisition, was determined using the Maximum Entropy model. This study found that the optimal population size for wild boar ranged from 217 to 254 individuals. The population size varied depending on the amount of resources available within the home range, indicating fewer individuals in a larger home range. The estimated wild boar population size was 217 individuals for the minimum amount of resources (50% minimum convex polygon [MCP] home range), 225 individuals for the average amount of resources (95% MCP home range), and 254 individuals for the maximum amount of resources (100% MCP home range). The results of one-way analysis of variance revealed a significant difference in wild boar population size based on the amount of resources within the home range. These findings provide a basis for the development and implementation of effective management strategies for wild boar populations.
종분포 모델은 어떤 지역에서 침입외래종이 어떻게 확장되고 어떤 환경 요인이 이들의 분포에 영향을 미치는지를 이해하는데 매우 유용한 도구이다. 본 연구에서는 한반도에서 두 침입외래종인 돼지풀 (Ambrosia artemisiifolia)과 물참새피 (Paspalum distichum)의 분포에 대하여 연구하였다. 이 두 종의 현재의 분포지에서 기후환경 요인을 분석하고 이 두 종의 분포를 예측하기 위하여 Maxent (the maximum entropy) 모델을 이용하였다. 이 두 종의 출현 자료는 Global Biodiversity Information Facility와 우리나라의 식물종 데이터베이스에서, 생물기후 자료는 WorldClim 자료로부터 얻었다. 모델을 수행한 결과, 자생지 위치자료를 이용한 예측 결과보다 전지구 위치자료를 이용한 예측이 연구 대상종의 잠재적 분포지를 잘 설명하였다. 이들 종의 분포에 기여한 기후환경 요인으로서 돼지풀에서는 최건월의 강수량과 연평균온도가, 물참새피에서는 연평균온도와 최한사분기의 평균온도가 선정되었다. Maxent 종분포 모델은 외래종의 침입을 예측하고 이들의 확산을 관리하는데 유용한 도구가 될 것으로 생각된다.
본 연구에서는 도심 내 단절되어 있는 서식지의 연결성을 고려하여 생태통로를 구축하고자 하는 선행연구로 서울시의 인왕산과 안산의 생물 종 분포를 예측하였다. 연구대상지역인 인왕산과 안산의 생물 종 분포는 출현자료만으로도 결과를 예측할 수 있는 Maxent(Maximum Entropy Approach) 모형을 이용하여 분석하였다. Maxent 모형을 활용하여 종 분포를 예측하기 위해, 출현자료는 포유류 23개 지점과 박새류(Parus major, P. palustris, P. varius) 3종 15개 지점을 활용하였다. Maxent 모형의 환경변수로는 지형인자 4가지, 식생인자 4가지와 거리인자 2가지를 대상으로 구축하였다. 이 변수들을 활용하여 종 분포를 예측한 결과, 포유류의 경우에는 수치표고자료(DEM)가 34%, 산림지역의 경계로부터 산림내부의 거리가 24.8%, 수종이 10% 순으로 종 분포 모형에 기여도가 높았다. 반면 박새류의 경우에는 수치표고자료가 39.6%, 도로로부터의 거리가 35.4%, 나무의 밀도가 8.2% 순으로 모형에 기여도가 높았다. 따라서 조류 및 포유류는 산림 내부지역을 선호하는 것으로 나타났으며, 이 지역 보전이 필요한 것으로 판단된다.
For optimal design of a deep-sea ocean mining collector system, based on self-propelled mining vehicle, it is imperative to develop and validate the dynamic model of a tracked vehicle traveling on soft deep seabed. The purpose of this paper is to evaluate the fidelity of the dynamic simulation model by means of response surface methodology. Various statistical techniques related to response surface methodology, such as outlier analysis, detection of interaction effect, analysis of variance, inference of the significance of design variables, and global sensitivity analysis, are examined. To obtain a plausible response surface model, maximum entropy sampling is adopted. From statistical analysis and prediction for dynamic responses of the tracked vehicle, conclusions will be drawn about the accuracy of the dynamic model and the performance of the response surface model.
Quantitative forecasting methods based on spatial data and geographic information system have been used in predicting the landslide location. This study compared the simulated results of logistic, Bayesian, and maximum entropy models to understand the uncertainties of each model and identify the main factors that influence landslide. The study area is Boeun gun where 388 landslides occurred in the year of 1998. The verification results showed that the AUC of the three models was 0.84. However, the landslide susceptibility distribution of Maxent model was different from those of the other two models. With the same landslide occurrence data, the result of high susceptible area in Maxent model is smaller than Logistic or Bayesian. Maxent model, however, proved to be more efficient in predicting landslide than the other two models. In Maxent's simulations, the responsible factors for landslide susceptibility are timber age class, land cover, timber diameter, crown closure, and soil drainage. The results suggest that it is necessary to consider the possibility of overestimation when using Logistic or Bayesian model, and forest management around the study area can be an effective way to minimize landslide possibility.
With the stochastic process which consists of the harmonic sinusoid and the white nosie, the power spectrum of background EEG is estimated by the Pisarenko Harmonic Decomposition. The estimating results are examined and compared with the results from the maximum entropy spectral estimation, and the optimal order of this model can be determined from the eigen value's fluctuation of autocorrelation of background EEG. From the comparing results, this paper ensures that this method is possible to analyze the power spectrum of background EEG.
To resolve ambiguities in speech act classification, various machine learning models have been proposed over the past 10 years. In this paper, we review these machine learning models and present the results of experimental comparison of three representative models, namely the decision tree, the support vector machine (SVM), and the maximum entropy model (MEM). In experiments with a goal-oriented dialogue corpus in the schedule management domain, we found that the MEM has lighter hardware requirements, whereas the SVM has better performance characteristics.
주어진 문자열에 품사를 정해주는 방법으로 현재 많이 사용되고 있는 것 중의 하나로 통계적 방법을 들 수 있다. 대부분의 통계적 방법은 품사 태깅을 위해 주변 품사열만으로 이뤄진 단순한 정보를 사용하고 있는데, 품사 태깅 문제는 본래 품사열 정보 뿐 아니라 단어에 대한 어휘 정보, 통사 정보, 연어 정보 등 다양한 정보들이 종합되어야 하는 문제이다. 이에 본 논문에서는 품사 태깅에 유용한 정보를 정형화하여 성능 향상을 얻어내는 방법을 제안한다. 제안된 방법은 먼저 품사열 정보만을 이용한 품사 태깅의 주된 오류인 조사, 용언, 연결어미의 구분 문제와 복합어의 형태소 분석 문제를 해결하기 위한 정보를 품사 분류 기준으로부터 얻어낸다. 얻어낸 정보들은 정형화 과정을 거쳐 최대 엔트로피 모델의 자질로 사용된다. 이렇게 얻어낸 모델을 가지고 수행된 실험 결과, 품사열 정보만을 이용한 품사태깅보다 좋은 성능을 얻을 수 있었다.
본 연구에서는 문서 안에 있는 문장들 중 비교 문장을 추출해낸다. 비교 문장이란 두 개 이상의 객체, 혹은 한 객체의 시간차, 공간차 등에 따른 변화를 비교하는 내용을 포함하는 문장을 말한다. 비교 문장을 구별해내는 작업은 많은 분야에서 응용될 수 있는데, 특히 객체(사람, 상품 등)에 대한 평가 면에서 매우 직접적이고 확실한 자료로 활용될 수 있다. 비교문장 추출을 위해 본 연구에서는 비교어휘를 이용한 추출 및 MEM(Maximum Entropy Model)을 적용하였으며, 뉴스기사(news article), 상품에 대한 고객리뷰(customer review) 등의 문서를 대상으로 실험하여 재현율 88.40%, 정확률 88.68%의 결과를 산출하였다.
다중 화자 대화 시스템에서, 시스템의 입장에서 어느 시점에 참여해야하는지를 아는 것은 중요하다. 이러한 참여 모델을 구축함에 있어서 본 연구에서는 다수의 화자가 대화에 참여하는 영화 대본으로 구축된 MovieDic 말뭉치를 사용하였다. 구축에 필요한 자질로써 의문사, 호칭, 명사, 어휘 등을 사용하였고, 훈련 알고리즘으로는 Maximum Entropy Classifier를 사용하였다. 실험 결과 53.34%의 정확도를 기록하였으며, 맥락 자질의 추가로 정확도 개선을 기대할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.