• Title/Summary/Keyword: Maximum Entropy Model

Search Result 135, Processing Time 0.022 seconds

Families of Distributions Arising from Distributions of Ordered Data

  • Ahmadi, Mosayeb;Razmkhah, M.;Mohtashami Borzadaran, G.R.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.105-120
    • /
    • 2015
  • A large family of distributions arising from distributions of ordered data is proposed which contains other models studied in the literature. This extension subsume many cases of weighted random variables such as order statistics, records, k-records and many others in variety. Such a distribution can be used for modeling data which are not identical in distribution. Some properties of the theoretical model such as moment, mean deviation, entropy criteria, symmetry and unimodality are derived. The proposed model also studies the problem of parameter estimation and derives maximum likelihood estimators in a weighted gamma distribution. Finally, it will be shown that the proposed model is the best among the previously introduced distributions for modeling a real data set.

Spatio-Temporal Incidence Modeling and Prediction of the Vector-Borne Disease Using an Ecological Model and Deep Neural Network for Climate Change Adaption (기후 변화 적응을 위한 벡터매개질병의 생태 모델 및 심층 인공 신경망 기반 공간-시간적 발병 모델링 및 예측)

  • Kim, SangYoun;Nam, KiJeon;Heo, SungKu;Lee, SunJung;Choi, JiHun;Park, JunKyu;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.197-208
    • /
    • 2020
  • This study was carried out to analyze spatial and temporal incidence characteristics of scrub typhus and predict the future incidence of scrub typhus since the incidences of scrub typhus have been rapidly increased among vector-borne diseases. A maximum entropy (MaxEnt) ecological model was implemented to predict spatial distribution and incidence rate of scrub typhus using spatial data sets on environmental and social variables. Additionally, relationships between the incidence of scrub typhus and critical spatial data were analyzed. Elevation and temperature were analyzed as dominant spatial factors which influenced the growth environment of Leptotrombidium scutellare (L. scutellare) which is the primary vector of scrub typhus. A temporal number of diseases by scrub typhus was predicted by a deep neural network (DNN). The model considered the time-lagged effect of scrub typhus. The DNN-based prediction model showed that temperature, precipitation, and humidity in summer had significant influence factors on the activity of L. scutellare and the number of diseases at fall. Moreover, the DNN-based prediction model had superior performance compared to a conventional statistical prediction model. Finally, the spatial and temporal models were used under climate change scenario. The future characteristics of scrub typhus showed that the maximum incidence rate would increase by 8%, areas of the high potential of incidence rate would increase by 9%, and disease occurrence duration would expand by 2 months. The results would contribute to the disease management and prediction for the health of residents in terms of public health.

How Can We Erase States Inside a Black Hole?

  • Hwang, Junha;Park, Hyosub;Yeom, Dong-han;Zoe, Heeseung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1420-1430
    • /
    • 2018
  • We investigate an entangled system, which is analogous to a composite system of a black hole and Hawking radiation. If Hawking radiation is well approximated by an outgoing particle generated from pair creation around the black hole, such a pair creation increases the total number of states. There should be a unitary mechanism to reduce the number of states inside the horizon for black hole evaporation. Because the infalling antiparticle has negative energy, as long as the infalling antiparticle finds its partner such that the two particles form a separable state, one can trace out such a zero energy system by maintaining unitarity. In this paper, based on some toy model calculations, we show that such a unitary tracing-out process is only possible before the Page time while it is impossible after the Page time. Hence, after the Page time, if we assume that the process is unitary and the Hawking pair forms a separable state, the internal number of states will monotonically increase, which is supported by the Almheiri-Marolf-Polchinski-Sully (AMPS) argument. In addition, the Hawking particles cannot generate randomness of the entire system; hence, the entanglement entropy cannot reach its maximum. Based on these results, we modify the correct form of the Page curve for the remnant picture. The most important conclusion is this: if we assume unitarity, semi-classical quantum field theory, and general relativity, then the black hole should violate the Bekenstein-Hawking entropy bound around the Page time at the latest; hence, the infinite production arguments for remnants might be applied for semi-classical black holes, which seems very problematic.

Automatic Detection of Korean Prosodic Boundaries U sing Acoustic and Grammatical Information (음성정보와 문법정보를 이용한 한국어 운율 경계의 자동 추정)

  • Kim, Sun-Hee;Jeon, Je-Hun;Hong, Hye-Jin;Chung, Min-Hwa
    • MALSORI
    • /
    • no.66
    • /
    • pp.117-130
    • /
    • 2008
  • This paper presents a method for automatically detecting Korean prosodic boundaries using both acoustic and grammatical information for the performance improvement of speech information processing systems. While most of previous works are solely based on grammatical information, our method utilizes not only grammatical information constructed by a Maximum-Entropy-based grammar model using 10 grammatical features, but also acoustical information constructed by a GMM-based acoustic model using 14 acoustic features. Given that Korean prosodic structure has two intonationally defined prosodic units, intonation phrase (IP) and accentual phrase (AP), experimental results show that the detection rate of AP boundaries is 82.6%, which is higher than the labeler agreement rate in hand transcribing, and that the detection rate of IP boundaries is 88.7%, which is slightly lower than the labeler agreement rate.

  • PDF

Power Spectral Estimation of Background EEG with LMS PHD (LMS PHD에 의한 배경단파 파워 스펙트럼 추정)

  • 정명진;최갑석
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.101-108
    • /
    • 1988
  • In this paper the power spectrum of background EEG is estimated by the LMS PHD based on least mean square. At the power spectrum estimatiom, the stocastic process of background EEG is assumed to consist of the nonharmonic sinusoid and the white noise. In the LMS PHD the model parameters are obtained by the least mean square at optimal order which is obtained from the fact that the eigenvalue's fluctuation of autocorrelation matrix of the normal back-ground EEG is smaller at some order than at other order when the power spectrum of background EEG is esitmated by PHD. The optimal order of this model is the 6-th order when the eigenvalue's fluctuation of autocorrelation matrix of background EEG is considered. The estimation results are with compared the results from the Maximum Entropy Spectral Estimation and Pisarenko Harmonic Decomposition. From the comparison results. The LMS PHD is possible to estimate the power spectrum of background EEG.

  • PDF

CONFIDENCE MEAUSRING METHOD FOR CONTIUOUS SPEECH RECOGNITION USING MAXIMUM ENTROPY MODEL (최대 엔트로피 모델을 이용한 연속음성인식에서의 인식 신뢰도 측정)

  • Jung, Sang-Keun;Jeong, Min-Woo;Lee, Gary Geun-Baee
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.200-204
    • /
    • 2004
  • 음성인식기술을 실제 생활에 적용할 때 발생하는 대표적인 문제로. 인식기의 낮은 인식률로 인한 오동작을 들 수 있다. 본 연구에서는, 텔레뱅킹 도메인에서의 HTK(Hidden Markov Model Toolkit) 연속 음성 인식 시스템과, 최대 엔트로피 기법에 기반한 사용자 발화에서의 핵심이 되는 단어(주로 고유 명사들)들에 대한 인식 신뢰도의 측정 방법을 제시한다. 음향특징과 언어특징들을 모두 고려하여 인식 신뢰도를 구하였으며 인식된 단어들에 대해 오인식 되었음을 약 86%의 정확도로 판단할 수 있음을 확인하였다. 본 인식신뢰도를 이용하여 차후에 음성인식의 확인대화(Clarification Dialog)모델을 개발하는데 활용하고자 한다.

  • PDF

Generation of Finite Inductive, Pseudo Random, Binary Sequences

  • Fisher, Paul;Aljohani, Nawaf;Baek, Jinsuk
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1554-1574
    • /
    • 2017
  • This paper introduces a new type of determining factor for Pseudo Random Strings (PRS). This classification depends upon a mathematical property called Finite Induction (FI). FI is similar to a Markov Model in that it presents a model of the sequence under consideration and determines the generating rules for this sequence. If these rules obey certain criteria, then we call the sequence generating these rules FI a PRS. We also consider the relationship of these kinds of PRS's to Good/deBruijn graphs and Linear Feedback Shift Registers (LFSR). We show that binary sequences from these special graphs have the FI property. We also show how such FI PRS's can be generated without consideration of the Hamiltonian cycles of the Good/deBruijn graphs. The FI PRS's also have maximum Shannon entropy, while sequences from LFSR's do not, nor are such sequences FI random.

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Comparative Study of Reliability Analysis Methods for Discrete Bimodal Information (바이모달 이산정보에 대한 신뢰성해석 기법 비교)

  • Lim, Woochul;Jang, Junyong;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.883-889
    • /
    • 2013
  • The distribution of a response usually depends on the distribution of a variable. When the distribution of a variable has two different modes, the response also follows a distribution with two different modes. In most reliability analysis methods, the number of modes is irrelevant, but not the type of distribution. However, in actual problems, because information is often provided with two or more modes, it is important to estimate the distributions with two or more modes. Recently, some reliability analysis methods have been suggested for bimodal distributions. In this paper, we review some methods such as the Akaike information criterion (AIC) and maximum entropy principle (MEP) and compare them with the Monte Carlo simulation (MCS) using mathematical examples with two different modes.

A Two-Phase Shallow Semantic Parsing System Using Clause Boundary Information and Tree Distance (절 경계와 트리 거리를 사용한 2단계 부분 의미 분석 시스템)

  • Park, Kyung-Mi;Hwang, Kyu-Baek
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.531-540
    • /
    • 2010
  • In this paper, we present a two-phase shallow semantic parsing method based on a maximum entropy model. The first phase is to recognize semantic arguments, i.e., argument identification. The second phase is to assign appropriate semantic roles to the recognized arguments, i.e., argument classification. Here, the performance of the first phase is crucial for the success of the entire system, because the second phase is performed on the regions recognized at the identification stage. In order to improve performances of the argument identification, we incorporate syntactic knowledge into its pre-processing step. More precisely, boundaries of the immediate clause and the upper clauses of a predicate obtained from clause identification are utilized for reducing the search space. Further, the distance on parse trees from the parent node of a predicate to the parent node of a parse constituent is exploited. Experimental results show that incorporation of syntactic knowledge and the separation of argument identification from the entire procedure enhance performances of the shallow semantic parsing system.