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Abstract
A large family of distributions arising from distributions of ordered data is proposed which contains other

models studied in the literature. This extension subsume many cases of weighted random variables such as
order statistics, records, k-records and many others in variety. Such a distribution can be used for modeling
data which are not identical in distribution. Some properties of the theoretical model such as moment, mean
deviation, entropy criteria, symmetry and unimodality are derived. The proposed model also studies the problem
of parameter estimation and derives maximum likelihood estimators in a weighted gamma distribution. Finally,
it will be shown that the proposed model is the best among the previously introduced distributions for modeling
a real data set.

Keywords: Beta distribution, location-scale family, weighted distribution, order statistics, k-record
statistics.

1. Introduction

There are various types of ordered data such as usual order statistics, records and k-records, which
come from a certain stochastic model. Moreover, there are situations in which the recoded obser-
vations do not have original distribution, while the generalized version of a certain stochastic model
may be adequate for fitting the data. For example, Jones (2004) proposed a collection of generalized
distributions with the probability density function (pdf)

g(x) ∝ Fa(x)F̄b(x) f (x), (1.1)

where f (·), F(·) and F̄(·) denote the pdf, cumulative distribution function (cdf) and survival function
of the original distribution, respectively. It is clear that for the special case of a = i−1 and b = n−i, the
model (1.1) simplifies to the pdf of usual order statistics. This generalization is useful in distribution
theory and its empirically studying related to exploring properties of new families. The main point
of Jones (2004) was to provide further families of distribution to use in modeling skewness or heavy
tailed data by having a, b and f (·). Recently, this model has also been considered by some authors.
For example, Pescim et al. (2010), Silva et al. (2010), Moraisa et al. (2013) and Parnaiba et al.
(2011) have discussed the advantage and disadvantage of the “beta generalized half normal”, “modi-
fied Weibull”, “generalized logistic” and “Burr XII” distributions, respectively. Gusmao et al. (2011)
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concentrated their attention on the generalized inverse inverse Weibull distribution. Lemonte (2014)
derived a new continuous distribution as a weighted version of log-logistic called the beta log-logistic
with some special cases. The “beta Gumbel”, “beta Fréchet” and “beta generalized exponential” are
also some other famous distributions which have been investigated by Nadarajah and Kotz (2004),
Nadarajah and Gupta (2004) and Barreto-Souza et al. (2010), respectively.

It is important to note that the above mentioned models are weighted versions of an original pdf.
The concept of weighted distributions started by Fisher (1934). The model has been formulated in a
general form by Rao (1965) for modeling the observed data which is useful in practical works. Sup-
pose that the pdf of random variable X is f (x, θ) and w(x) is a non-negative function, then, the observed
random variable Xw has weighted distribution with density g(x, θ) = (w(x)/E[w(X)]) f (x, θ). Notice
that the weight function may depend on some parameters including θ. The weighted distributions
can be considered as a tool to select a suitable model for observed data. The pdf of order statistics,
k-record values and also the models like truncated distribution, proportional (reversed) hazard, proba-
bility weighted models and skewed distributions are famous examples of weighted distributions. For
more details see papers due to weighted models from Rao (1965) to Bartoszewicz (2009) and the
books by Reiss (1989), Arnold et al. (1998), David and Nagaraja (2003), Arnold et al. (2008) and
references. Recently, Ye et al. (2012) studied the weighted generalized beta distribution of the second
type and related distributions such as weighted version of generalized gamma, beta of second kind,
Singh-Maddala, Dagum, gamma, Weibull and exponential distributions with their applications. Fur-
thermore, Cordeiro et al. (2012) and Ramadan (2013) investigated the class of beta extended Weibull
and weighted Weibull distributions with discussions on revealing their importance in distribution the-
ory, respectively.

Another family of weighted distributions as different version of Jones model with the pdf

g(x) ∝ Fa−1(x) (1 − Fa(x))b f (x)

is well-known as Kumaraswamy (KW) model. For various choices of F(x) such as Pareto, gamma,
Weibull, Gamble, inverse Gaussian, half normal, beta and generalized gamma, the Kumaraswamy
model can be used to fit skewed observed data sets.

Recently, a family of distributions generated by the distribution of record statistics studied by
Amini et al. (2014). This paper introduces a large family of distributions arising from distributions of
ordered data which contains other models studied in the literature. The goal of this generalization is
to provide more flexible families of distributions for modeling observed data. Some properties of the
theoretical model are derived and it will be shown that the model is useful for modeling the data sets
which are not identical in distribution.

The rest of the paper is organized as follows. In Section 2, the proposed model is described.
Some properties of the model are presented in Section 3. In this section, the location-scale family of
distributions are considered. The moments, two deviation criteria, entropy, symmetry and unimodality
of the model are also investigated. The parameter estimates of the model is studied in Section 4 and a
real data set is used to illustrate the results of the paper in Section 5.

2. Model Description

Numerous classical distributions have been extensively used in view of extensions of distributions
of the order statistics such as Jones (2004) model with lots of motivations and distributions that are
introduced. Extended class of distributions are also provided by Amini et al. (2014) including the
distributions of record values and k-records. Here, we generalize these two ideas to obtain a family
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of distributions that subsume both of the above mechanism. Let us denote the cdf and pdf of a
continuous random variable X by F(·) and f (·), respectively, then a generalized class of distributions
can be defined with the following pdf

gF(x; a, b, c, d) =
1

M(a, b, c, d)
Fa−1(x)F̄b−1(x)

(− log F(x)
)c−1

(
− log F̄(x)

)d−1
f (x), (2.1)

where a, b, c and d are positive real constant and

M(a, b, c, d) =
∫ 1

0
ua−1(1 − u)b−1(− log u)c−1 (− log(1 − u)

)d−1 du (2.2)

is normalizing constant. It is clear that (2.1) is a weighted distribution with weight function

w(x) = Fa−1(x)F̄b−1(x)
(− log F(x)

)c−1
(
− log F̄(x)

)d−1

and E[w(X)] = M(a, b, c, d). Notice that the model (2.1) can be considered as a weighted version of
Jones model (WJM) with weight function w(x) = (− log F(x))c−1(− log F̄(x))d−1.

Some special cases of the WJM can be considered as:

1. Taking c = d = 1, the proposed model leads to the Jones (2004) model, in this case for a = i and
b = n − i + 1, the pdf of the ith order statistic in a random sample of size n is derived.

2. For the special case of b = d = 1 or a = c = 1, the WJM leads to the Amini et al. (2014) model.

3. Taking a = b = c = 1 and d = m, gF(x; a, b, c, d) is the same as pdf of the mth upper record.
Similarly, for a = b = d = 1 and c = n, the pdf of the nth lower record is obtained.

4. For the case of a = c = 1, b = k and d = m, gF(x; a, b, c, d) converts to the pdf of the mth upper
k-record. Similarly for b = d = 1, a = k and c = n, the pdf of the nth lower k-record is obtained.

5. When b = c = d = 1 or a = c = d = 1, the pdf of reversed proportional hazard rate model or
proportional hazard rate model are derived, respectively.

In what follows, some properties of M(a, b, c, d) are presented:

• (Existing) By twice use of Cauchy-Schwartz inequality we have

M(a, b, c, d) =
∫ 1

0
ua−1(1 − u)b−1(− log u)c−1(− log 1 − u)d−1du

≤
[∫ 1

0
u2(a−1)(1 − u)2(b−1)du

∫ 1

0
(− log u)2(c−1)(− log 1 − u)2(d−1)du

] 1
2

= [β(2a − 1, 2b − 1)]
1
2

[∫ ∞

0

[− log(1 − e−y)
]2c−2 y2d−2e−ydy

] 1
2

≤ [β(2a − 1, 2b − 1)]
1
2

[∫ ∞

0

[− log(1 − e−y)
]4c−4 e−ydy

∫ ∞

0
y4d−4e−ydy

] 1
4

=
√
β(2b − 1, 2b − 1) [Γ(4c − 3)Γ(4d − 3)]

1
4 ,
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where β(· , ·) and Γ(·) are the complete beta and gamma functions, respectively, which both are
finite. Therefore, for any positive real values of a, b, c and d such that a, b > 1/2 and c, d > 3/4,
the normalizing constant in (2.2) exists.

• (Expansion) For real positive value of b and d and integer positive values a and c that c ≥ 1, by
transforming y = − log(1 − u) and using the identity log(1 − e−y) = −∑∞

i=1(e−iy/i), we can write

M(a, b, c, d) =
∫ ∞

0

(
1 − e−y)a−1 (

e−y)b−1 [− log
(
1 − e−y)]c−1 yd−1e−ydy

=

∫ ∞

0
yd−1

a−1∑
i=0

(
a − 1

i

)
(−1)ie−iy

 e−by

 ∞∑
i=1

e−iy

i

c−1

=

a−1∑
i=0

∞∑
j=c−1

(
a − 1

i

)
(−1)iC j(c − 1)

∫ ∞

0
yd−1e−(i+ j+b)ydy

= Γ(d)
a−1∑
i=0

∞∑
j=c−1

(
a−1

i

)
(−1)iC j(c − 1)

(i + j + b)d , (2.3)

where C j(n) is the coefficients of w j in the expansion of (
∑∞

i=1(wi/i))n. That is, for j ≥ 1, C j(1) =
1/ j and for j ≥ n ≥ 2, C j(n) =

∑ j−1
k=n−1{Ck(n − 1)/( j − k)}.

• If c and d are integer values, we can write M(a, b, c, d) = (∂c+d−2β(a, b))/(∂ac−1∂bd−1).

• It can be shown that for positive real values a, b, c and d, normalizing constant is symmetric, i.e.,
M(a, b, c, d) = M(b, a, d, c).

• In Table 1, we have presented some distributions as special cases of (2.1), which have been recently
investigated by many authors.

Some special cases of M(a, b, c, d) would be considered as:

1. M(a, b, 1, 1) = β(a, b),

2. M(1, 1, c, 1) = Γ(c),

3. M(1, 1, 1, d) = Γ(d),

4. M(a, 1, c, 1) =
Γ(d)
ac .

Example 1. Suppose that the underlying population has exponential distribution with the cdf F(x) =
1 − e−λx. Then, for a = 1 and c = 2, the model (2.1) reduces to the following pdf

g∗F(x; b, d, λ) =
λd

M(1, b, 2, d)
xd−1e−λbx

[
− log

(
1 − e−λx

)]
, x > 0, (2.4)

where

M(1, b, 2, d) = Γ(d)
∞∑

i=1

1
i(b + i)d . (2.5)

Notice that a distribution with the pdf presented in (2.4) can be considered as a weighted gamma
(WG) distribution. Figure 1 shows the pdf and cdf plots of WG model for some choices of b, d and λ.
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Table 1: Some special cases of gF(x).
a b c d baseline cdf Name of Model Reference
a b 1 1 F(x) Jones model Jones (2004)

a b 1 1 1 − e−λx, x > 0 Beta exponential Nadarajah and Kotz (2004)

a b 1 1 Φ(x), xεR Beta Gumbel Nadarajah and Gupta (2004)

a b 1 1 e−(
σ
x )λ , x > 0 Beta Fréchet Barreto-Souza et al. (2010)

a b 1 1 exp
{
e−

x−µ
σ

}
, x, µϵR, σ > 0 Beta Gumbel Nadarajah and Kotz (2004)

a b 1 1 2√
π
Γ

(
3
2 ,

x2

2a2

)
, x > 0 Beta Maxwell Amusan (2010)

a b 1 1 1 −
(

x
θ

)k
, x ≥ θ, θ, k > 0 Beta Pareto Akinsete et al. (2008)

a b 1 1 1 − e−
x
2 , x ≥ 0 Beta Laplace Cordeiro and Lemonte (2011)

a b 1 1 1 −
[
1 +

(
x
s

)C
]−k

Beta Burr XII Paranaiba et al. (2011)

a b 1 1 2Φ
[(

x
θ

)α] − 1 Beta generalized half-normal Pescim et al. (2010)

a b 1 1 Φ
( log x−µ

σ

)
Beta log-normal Castellares et al. (2013)

a b 1 1 1 − exp {− (λx)c} Beta extended Weibull Cordeiro et al. (2012)

a b 1 1 xβ−1

αβ+xβ
, α, β, x > 0 Beta log-logistic Lemonte (2014)

a b 1 1 2
π arctan(exp(x)) Beta-Hyperbolic secant Fischer and Vaughan (2010)

a 1 c 1 F(x) Log-Gamma generated family Amini et al. (2014)

1 b 1 d F(x) Log-Gamma generated family Amini et al. (2014)

Figure 1: The pdfs (top line plots) and cdfs (low line plots) of WG model for some choices of b, d and λ.
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3. Some Properties of the Weighted Jones Model (WJM)

In this section, some properties of the WJM are studied. First the functional form of the corresponding
cdf is derived. Then, we show that this model preserves the location and scale parameter. Investigation
about moments, mean deviation, symmetry, modality and Entropy criterion is also performed.

3.1. Distribution function

From (2.1) by change variable u = F(x), the corresponding cdf of the WJM can be obtained as

GF(x; a, b, c, d) =
M

(
a, b, c, d,− log F̄(x)

)
M(a, b, c, d)

, (3.1)

where

M(a, b, c, d, t) =
∫ t

0
ua−1(1 − u)b−1(− log u)c−1(− log(1 − u))d−1du. (3.2)

For real positive values b and d and integer positive values a and c, for which c > 1, by transforming
y = − log F̄(x), we can write

GF(x; a, b, c, d) =
1

M(a, b, c, d)

∫ − log F̄(x)

0

(
1 − e−y)a−1 (

e−y)b−1 [− log
(
1 − e−y)]c−1 yd−1e−ydy

=

∑a−1
i=0

∑∞
j=c−1

(a−1
i )(−1)iC j(c−1)[Γ(d)−Γ(d,−(i+ j+b) log F̄(x))]

(i+ j+b)d

Γ(d)
∑a−1

i=0
∑∞

j=c−1
(a−1

i )(−1)iC j(c−1)
(i+ j+b)d

= 1 −
∑a−1

i=0
∑∞

j=c−1
(a−1

i )(−1)iC j(c−1)Γ[d,−(i+ j+b) log F̄(x)]
(i+ j+b)d

Γ(d)
∑a−1

i=0
∑∞

j=c−1
(a−1

i )(−1)iC j(c−1)
(i+ j+b)d

, (3.3)

where Γ(d, t) =
∫ ∞

t yd−1e−ydy is the incomplete gamma function. Note that known F(·) and (a, b, c, d)
implies via (3.3) random numbers with distribution gF(·).

Furthermore, using (3.3), it is deduced that the corresponding cdf of (2.4) is given by

GF(x; b, d, λ) = 1 −
∑∞

j=1
Γ[d,(λb+λ j)x]

j(b+ j)d

Γ(d)
∑∞

j=1
1

j( j+b)d

.

3.2. Location-scale family

Let the underlying cdf belong to the location-scale family of distribution, i.e., F(x; µ, σ) = F0((x − µ)/
σ). In this case, the parameters µ and σ are also of great interest and the pdf in (2.1) can be extended
to the following parameterized pdf

gF(x; a, b, c, d, µ, σ)

=
1

M(a, b, c, d)
Fa−1

0

( x − µ
σ

)
F̄b−1

0

( x − µ
σ

) [
− log F0

( x − µ
σ

)]c−1
×

[
− log F̄0

( x − µ
σ

)]d−1 1
σ

f
( x − µ
σ

)
=

1
σ

gF0

( x − µ
σ

; a, b, c, d, 0, 1
)

=
1
σ

gF0

( x − µ
σ

; a, b, c, d
)
. (3.4)
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It is observed that if the underlying distribution belong to location-scale family, then WJD, also is,
i.e., this model preserves the location and scale parameter.

3.3. Moments

Here, we first study the necessary condition for the existence of the moments of the WJM, then present
some exact expressions for the situations in which the parent distribution is exponential.

Lemma 1. Let X be a random variable with cdf F(x) and pdf f (x) and X∗ be a random variable
with pdf (2.1). If E(|X|k+δ) < ∞ for any non-negative integer k and δ > 0, then for a, b > 1/2 and
c, d > 3/4, E(|X∗|k) < ∞ .

Proof: By the use of Holder and Cauchy-Schwartz inequalities, we get

E
(
|X∗|k

)
=

1
M(a, b, c, d)

∫ ∞

−∞
|x∗|k[F(x∗)]a−1

[
F̄(x∗)

]b−1 [− log F(x∗)
]c−1

[
− log F̄(x∗)

]d−1
f (x∗)dx∗

=
1

M(a, b, c, d)

∫ 1

0

∣∣∣F−1(u)
∣∣∣k ua−1(1 − u)b−1(− log u)c−1 (− log(1 − u)

)d−1 du

≤

[∫ 1
0 (− log u)q(c−1)(− log(1 − u))q(d−1)du

] 1
q

M(a, b, c, d)

[∫ 1

0

∣∣∣F−1(u)
∣∣∣pk

up(a−1)(1 − u)p(b−1)du
] 1

p

=
[M(1, 1, cq − q + 1, dq − q + 1)]

1
q

M(a, b, c, d)

[∫ 1

0

∣∣∣F−1(u)
∣∣∣pk

up(a−1)(1 − u)p(b−1)du
] 1

p

≤ [M(1, 1, cq − q + 1, dq − q + 1)]
1
q

M(a, b, c, d)

[∫ 1

0

∣∣∣F−1(u)
∣∣∣2pk

du
∫ 1

0
u2p(a−1)(1 − u)2p(b−1)du

] 1
2p

=
[M(1, 1, cq − q + 1, dq − q + 1)]

1
q [β(2ap − 2p + 1, 2pb − 2p + 1)]

1
2p

M(a, b, c, d)

[
E|X|k+δ

] 1
2p , (3.5)

where 2kp = k + δ. Hence, the proof is complete. 2

Now, consider the situation in which c and d are integers and the parent distribution is standard
exponential. Then, the kth moment of X∗ is given by

E
(
Xk
∗
)
=

∫ 1

0
ua−1(1 − u)b−1(− log(u))c−1(− log 1 − u)k+d−1du

=
∂c+d+k−2β(a, b)
∂ac−1∂bk+d−1

(
∂c+d−2β(a, b)
∂ac−1∂bd−1

)−1

. (3.6)

Based on (3.6), the measures of skewness (SK) and kurtosis (KU) of WJM can be obtained as

SK =
∆(c−1,d+2)
∆(c−1,d−1) − 3 ∆(c−1,d)

∆(c−1,d−1)
∆(c−1,d+1)
∆(c−1,d−1) + 2

[
∆(c−1,d)
∆(c−1,d−1)

]3

[
∆(c−1,d+1)
∆(c−1,d−1) −

(
∆(c−1,d)
∆(c−1,d−1)

)2
] 3

2



112 Ahmadi Mosayeb, Razmkhah M., Mohtashami Borzadaran G. R.

Figure 2: The plots of gF(·), when the baseline distribution is standard uniform with various values of a, b, c and
d.

and

KU =
∆(c−1,d+3)
∆(c−1,d−1) − 4 ∆(c−1,d)

∆(c−1,d−1)
∆(c−1,d+2)
∆(c−1,d−1) + 6

(
∆(c−1,d)
∆(c−1,d−1)

)2 ∆(c−1,d+1)
∆(c−1,d−1) − 3

(
∆(c−1,d)
∆(c−1,d−1)

)4[
∆(c−1,d+1)
∆(c−1,d−1) −

(
∆(c−1,d)
∆(c−1,d−1)

)2
]2 − 3,

respectively, where ∆(i, j) = ∂i+ jβ(a, b)/(∂ai∂b j).
For the special case of WG distribution with pdf in (2.4), the moment generating function is given

by

M(t) =
λd

M(1, b, 2, d)

∫ ∞

0
xd−1e−(λb−t)x

(
− log

(
1 − e−λx

))
dx

=
λd

M(1, b, 2, d)

∞∑
i=1

Γ(d)
i(λb + λi − t)d , (3.7)

moreover, it can be shown that the rth moment is

µr =
λd

M

∫ ∞

0
xd+r−1e−λbx

∞∑
i=1

e−iλx

i
dx =

Γ(d + r)
λr M(1, b, 2, d)

∞∑
i=1

1
i(i + b)r+d ,

where M(1, b, 2, d) is defined by (2.5).

Remark 1. If a , b or c , d and the baseline distribution be symmetric, then gF will be skew. Note
that the value of skewness depends on the difference b − a and c − d. Moreover, the sign of skewness
depends on sign of (b − a) + (c − d). Figure 2 shows the plots of gF(·), when the baseline distribution
is standard uniform with various values of a, b, c and d.
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3.4. Mean deviations

As we know in symmetric distributions, deviation from the mean, and in skewed distributions, devia-
tion from the median can be used as a measure of spread in a population. Let X be random variable
with pdf f (x) and cdf F(x), then, the mean deviation from the mean and the mean deviation from the
median are defined by

δ1(X) =
∫ ∞

−∞
|x − µ| f (x) dx (3.8)

and

δ2(X) =
∫ ∞

−∞
|x − m| f (x) dx, (3.9)

respectively, where µ = E(X) and m is the median of X. As mentioned in Nadarajah et al. (2011), we
have

δ1(x) = 2µF(µ) − 2µ + 2
∫ ∞

µ

x f (x) dx

and

δ2(x) = 2
∫ ∞

m
x f (x) dx − µ.

To calculate the above quantities for random variable X∗ with pdf (2.1), we use the following identity∫ l2

l1
xgF(x)dx =

1
M(a, b, c, d)

∫ F(l2)

F(l1)
F−1(u)ua−1(1 − u)b−1(− log u)c−1 (− log(1 − u)

)d−1 du

= K[F(l1), F(l2), a, b, c, d], say. (3.10)

Hence∫ ∞

µ∗=Eg(X∗)
xgF(x)dx =

1
M(a, b, c, d)

∫ 1

F(µ∗)
F−1(u)ua−1(1 − u)b−1(− log u)c−1 (− log(1 − u)

)d−1 du

= K[F(µ∗), 1, a, b, c, d]
= K[F(K(0, 1, a, b, c, d)), 1, a, b, c, d]. (3.11)

Therefore,

δ1(X∗) = 2µ∗G(µ∗) − 2µ∗ + 2
∫ ∞

µ∗

ygF(x) dx

= 2µ∗K
[
0, F(µ∗), a, b, c, d

] − 2µ∗ + 2K
[
F(µ∗), 1, a, b, c, d

]
= 2K[0, 1, a, b, c, d]K[0, F(K(0, 1, a, b, c, d)), a, b, c, d] − 2K[0, 1, a, b, c, d]
+ 2K[F(K(0, 1, a, b, c, d)), 1, a, b, c, d] (3.12)

and

δ2(X∗) = 2K [G(m∗), 1, a, b, c, d] − K[0, 1, a, b, c, d],
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where m∗ is the median of X∗ and derived from (1/M(a, b, c, d))
∫ F(m∗)

0 ua−1(1−u)b−1(− log u)c−1(− log(1
−u))d−1du = 1/2.

Example 2. For the pdf (2.4), we have δ1(X∗) = 2(A−1)(B−1)−2 and δ2(X∗) = A−{2M(1, b, 2, d+
1, 1/2)}/{λM(1, b, 2, d)}, where A = M(1, b, 2, d + 1)/{λM(1, b, 2, d)} and B = M(1, b, 2, d + 1, 1−
e−λA)/{λM(1, b, 2, d)}.

Remark 2. Bonferroni index (B(p)) and Lorenz curve (L(p)) are important criteria in economic and
income studies and other fields. For the random variable Y with the pdf gF(y), they can be defined as

follows B(p) = (1/pµ∗)
∫ G−1(p)

0 xgF(x)dx and L(p) = (1/µ∗)
∫ G−1(p)

0 xgF(x)dx. Therefore, using (3.10),
we get B(p) = 1/{pK(0, 1, a, b, c, d)}K[0, F(G−1(p)), a, b, c, d] = L(p)/p.

3.5. Entropy

The notion of entropy has an important role in statistics, probability and communication theory. Shan-
non (1948) defined the entropy in discrete version with sensitive application in communication theory.
Let X be continuous random variable with pdf f (x), then entropy of X is defined as

H(X) = −
∫ ∞

−∞
f (x) log( f (x))dx. (3.13)

So, for the weighted random variable Xw with pdf fw(x) = w(x) f (x)/E(w(X)), we have

H(Xw) = − 1
E(w(X))

{
E f

[
w(X) log w(X)

]
+ E f

[
w(X) log f (x)

]}
+ log E(w(X)). (3.14)

When the weight function is a function of parent cdf, i.e., w(x) = ϕ(F(x)), the entropy is simplified to

H(Xw) = − 1
A

[
B +C f

]
+ log A, (3.15)

where

A = E f [w(X)] =
∫ 1

0
ϕ(y)dy,

B = E f
[
w(X) log w(X)

]
=

∫ 1

0
ϕ(y) log ϕ(y)dy

and

C f =

∫ 1

0
ϕ(y) log f

(
F−1(y)

)
dy.

Remark 3. Let X1 and X2 be two random variables with cdfs F1 and F2, respectively. Also, assume
that Xwi (i = 1, 2) be a weighted random variable of Xi with weight function wi(x) = ϕ(Fi(x)), then
H(Xw1 ) = H(Xw2 ) if C f1 = C f2 .

It is of interest to note that for model (2.1), we get

A = M(a, b, c, d),

B = (1−a)M(a, b, c+1, d)+(1−b)M(a, b, c, d+1)+(c−1)
∂M(a, b, c, d)

∂c
+(d−1)

∂M(a, b, c, d)
∂d
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and

C f =

∫ 1

0
ya−1(1 − y)b−1(− log y)c−1(− log 1 − y)d−1 log f

(
F−1(y)

)
dy.

Example 3. Let the parent distribution at the pdf (2.1) be the Weibull distribution with survival
function F̄(x) = e−αxβ , x ≥ 0. Then, we can write

H(X∗) = −
1
A

[
B + log

(
βαβ

)
M(a, b, c, d) +

1
β

log(β)M(a, b, c, d) (3.16)

−M(a, b, c, d + 1) +
β − 1
β

∂M(a, b, c, d)
∂d

]
+ log A.

Note that β = 1 and β = 2 imply the exponential and Rayleigh distributions as special cases, respec-
tively.

Lemma 2. If F and f are the parent cdf and pdf respectively and gF(·) is the WJM, then,

(a) EgF

[
(log F(X))l

]
=

(−1)lM(a, b, c + l, d)
M(a, b, c, d)

,

(b) EgF

[
(log(1 − F(X)))l

′ ]
=

(−1)l
′
M

(
a, b, c, d + l

′)
M(a, b, c, d)

,

(c) EgF

[
(log F(X))l(log(1 − F(X)))l

′ ]
=

(−1)l+l
′
M

(
a, b, c + l, d + l

′)
M(a, b, c, d)

.

3.6. Symmetry and unimodality

Let f be symmetric about zero, i.e., F(x) = F̄(−x) and f (x) = f (−x). In this case, we get

gF(−x; a, b, c, d) =
1

M(a, b, c, d)
F(−x)a−1F̄(−x)b−1(− log F(−x))c−1

(
− log F̄(−x)

)d−1
f (−x)

=
1

M(a, b, c, d)
F(x)b−1F̄(x)a−1(− log F(x))d−1

(
− log F̄(x)

)c−1
f (x)

= gF(x; b, a, d, c). (3.17)

Using (3.17), it is observed that in the special case a = b and c = d, the pdf gF(·) is also symmetric.

Lemma 3. Let f (·) be symmetric and unimodal pdf with corresponding cdf F(·), then gF(·) is also
unimodal with the same mode, if a = b and c = d.

Proof: By using (2.1), the first and second derivatives of gF(·) are

g′F(x) = f (x)gF(x)
[
a − 1
F(x)

− b − 1
F̄(x)

+
c − 1

F(x) log F(x)
− d − 1

F̄(x) log F̄(x)

]
+

f
′
(x)

f (x)
gF(x),

and

g′′F(x) = g′F(x)D(x) + D
′
(x)gF(x),
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respectively, where

D(x) = f (x)
[
a − 1
F(x)

− b − 1
F̄(x)

+
c − 1

F(x) log F(x)
− d − 1

F̄(x) log F̄(x)

]
+

f
′
(x)

f (x)

and

D
′
(x) = (a − 1)

f
′
(x)F(x) − f 2(x)

F2(x)
− (b − 1)

f
′
(x)F̄(x) − f 2(x)

F̄2(x)

+ (c − 1)
f
′
(x)F(x) log F(x) − f 2(x)

(
1 + log F(x)

)(
F(x) log F(x)

)2

− (d − 1)
f
′
(x)F̄(x) log F̄(x) − f 2(x)

(
1 + log F̄(x)

)
(
F̄(x) log F̄(x)

)2 +
f
′′
(x) f (x) −

(
f
′
(x)

)2

f 2(x)
.

Assuming m is the median of the symmetric pdf f (x), we get F(m) = 0.5 and f
′
(m) = 0. Therefore,

g′F(m) = 0 and g′′F(m) ≤ 0. That is, m is also the mode of gF(·). 2

Remark 4. In the cases that the baseline distribution is neither symmetric nor unimodal, depending
on various values of a, b, c and d, the pdf gF(·) should be unimodal or bimodal.

4. Estimation of Parameters

Let the parent cdf F be free of parameters and suppose X1, X2, . . . , Xn constitute a random sample of
size n from the pdf (2.1), then the likelihood function of the model for parameters a, b, c and d is
given by

L(a, b, c, d) = [M(a, b, c, d)]−n
(
Πn

i=1 f (xi)
)

exp {(a − 1)t1 + (b − 1)t2 + (c − 1)t3 + (d − 1)t4} ,

where t1, t2, t3 and t4 are the observed values of T1(X) =
∑n

i=1 log[F(Xi)], T2(X) =
∑n

i=1 log[F̄(Xi)],
T3(X) =

∑n
i=1 log[− log F(Xi)] and T4(X) =

∑n
i=1 log[− log F̄(Xi)], respectively, which are complete

sufficient statistics for the parameters a, b, c and d, respectively. Using (4.1), the maximum likelihood
estimators (MLE) for these parameters can be obtained by solving the following equations:

T1(X) − n
∂

∂a
log M(a, b, c, d) = 0,

T2(X) − n
∂

∂b
log M(a, b, c, d) = 0,

T3(X) − n
∂

∂c
log M(a, b, c, d) = 0,

T4(X) − n
∂

∂d
log M(a, b, c, d) = 0.

The above equations can be numerically solved. It is clear that if the underlying cdf belongs to the
location-scale family of distribution, our model have six parameters which is complicated in general,
but some special cases are noticeable. Here, we focus our attention to the WG distribution with the
pdf (2.4).
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Let us now consider a random sample of size n from the WG distribution with pdf (2.4). In this
case, the parameter λ may be estimated based on a random sample of size n from the WG distribution.
That is, λ̂ = 1/X̄, where X̄ is the sample mean. Hence, the log-likelihood function of the parameters
b and d is:

l
(
b, d, λ̂

)
= −n log M + n log λ̂ + (d − 1)

n∑
i=1

log Xi − b̂λ
n∑

i=1

Xi +

n∑
i=1

log
[
− log

(
1 − e−λ̂Xi

)]
.

Therefore, the MLEs of b and d can be obtained by solving the following two equations
−n

∂

∂b
log M(1, b, 2, d) + λ̂

n∑
i=1

Xi = 0,

−n
∂

∂d
log M(1, b, 2, d) + n log λ̂ +

n∑
i=1

log Xi = 0.
(4.1)

By doing some algebraic calculations it can be shown that

M(1, b, 2, d) = Γ(d)
∞∑
j=1

1
j( j + b)d ,

∂

∂b
M(1, b, 2, d) = −Γ(d + 1)

∞∑
j=1

1
j( j + b)d+1 ,

∂

∂d
M(1, b, 2, d) = Γ(d)

∞∑
j=1

Ψ(d) − log(b + j)
j( j + b)d ,

where Ψ(·) is the digamma function. In the next subsection, we use the above approach to estimate
the parameters of model (2.1).

5. Application to a Real Data Set

To illustrate the results of the paper, we use the annual flood loss data which is reported by the United
States (U.S.) Army Corps of Engineers to U.S. Congress. The data, available at http://www.nws.noaa.
gov/hic, were obtained by the National Weather Service (NWS) that continually gathers data from
each weather forecast office, and employs a rigorous process to quality control the damage estimates.
The NWS primary mission is to provide weather information for the protection of life and property.
Ancillary to this mission, NWS field offices provide loss estimates for significant flood events. Annual
flood loss data adjusted to 2011 inflation in $Billion from 1950–2011 are:

3.13, 17.18, 4.05, 1.85, 1.54, 13.68, 0.85, 4.51, 2.61, 1.61, 1.02, 1.65, 0.78,
1.79, 6.31, 7.36, 1.04, 3.17, 2.67, 6.45, 1.48, 1.65, 23.10, 9.07, 2.59, 5.63,
11.33, 4.58, 2.29, 10.57, 4.20, 2.57, 5.93, 8.92, 8.20, 1.08, 12.67, 2.97, 0.45,
2.12, 3.14, 3.19, 1.39, 28.50, 1.89, 8.47, 9.88, 13.59, 3.83, 8.17, 1.95, 10.45,
1.68, 3.36, 17.81, 51.17, 4.38, 2.97, 7.63, 1.06, 5.19, 8.41.

The Kolmogorov-Smirnov (K-S) test confirm that these data come from exponential distribution. The
upper 4-records extracted from above data:

1.85, 3.13, 4.05, 4.51, 6.31, 6.45, 7.36, 9.07, 11.33, 12.67, 13.68, 17.18, 17.81.



118 Ahmadi Mosayeb, Razmkhah M., Mohtashami Borzadaran G. R.

Table 2: Comparison among different models in view of both K-S test and AIC criterion.

Model Reference pdf K-S test AICtest statistic p-value
Weighted Gamma (WG) Present paper gF ( · ; 1, b, 2, d) 0.1163 0.9859 81.0521
Jones model Jones (2004) gF ( · ; a, b, 1, 1) 0.1211 0.9790 81.1974
Log-Gamma generated family Amini et al. (2014) gF ( · ; 1, b, 1, d) 0.4352 0.0093 94.3895
Log-Gamma generated family Amini et al. (2014) gF ( · ; a, 1, c, 1) 0.1213 0.9786 81.1959
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Figure 3: Q-Q plot of the observed sample against the weighted gamma distribution.

Notice that these data do not come from the same distribution, therefore, the weighted upper k-record
model such as the weighted model (2.4) seems suitable to fit them. Using the main data, the max-
imum likelihood estimate of λ is to be λ̂ = 0.1539. To obtained the MLEs of the parameters b
and d based on upper 4-records, one may solve the equations (4.1), which yields b̂ = 1.1071 and
d̂ = 3.1085. Finally, the K-S test is also used to clarify that upper 4-records come from the pdf
g∗F( · ; 1.1071, 3.1085, 0.1539). The observed value of K-S statistic is 0.1998 and the associated p-
value is 0.6082. Moreover, the AIC for this model is equal to 81.0521. Based on these observations,
one cannot reject the hypothesis that the data come from WG distribution with the pdf (2.4). For more
investigations about this model and comparing with those of Jones (2004) with pdf gF(x; a, b, 1, 1)
and Amini et al. (2014) with pdfs gF(x; a, 1, c, 1) and gF(x; 1, b, 1, d), a comparison has been done
in view of both K-S test and AIC criterion. Table 2 presents the results and the entries of Table 2
confirm that the proposed weighted gamma distribution provides a good fit for the above data. This
is also corroborated by the Q-Q plot of the sample quantiles against the quantiles of the pdf in (2.4)
presented in Figure 3.

6. Conclusions

This paper introduced a new family of distributions containing types of ordered data called WJM.
Some properties of this model were investigated; subsequently, the parameter estimation problem of
was also studied briefly. As we know, besides the Jones model, upper and lower k-record statistics
provide more information about right and left distribution tails, respectively. Nevertheless, WJM is
a combination of them. Development of different fields of sciences and the need for more flexible
models, led to introducing the generalized models. WJM includes many existing models on the inter-
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pretation of distribution tails.
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