References
- Akinsete, A., Famoye, F. and Lee, C. (2008). The beta-Pareto distribution, Statistics, 42, 547-563. https://doi.org/10.1080/02331880801983876
- Amini, M., MirMostafaee, S. M. T. K. and Ahmadi, J. (2014). Log-Gamma generated families of distributions, Statistics, 48, 913-932. https://doi.org/10.1080/02331888.2012.748775
- Amusan, G. E. (2010). The Beta Maxwell Distribution, Marshall University, Thesis.
- Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (2008). A First Course in Order Statistics, SIAM, Philadelphia.
- Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1998). Records, JohnWiley & Sons, New York.
- Bartoszewicz, J. (2009). On a representation of weighted distributions, Statistics and probability Letters, 79, 1690-1694. https://doi.org/10.1016/j.spl.2009.04.007
- Barreto-Souza, W., Santos, A. and Cordeiro, G. M. (2010). The beta generalized exponential distri-bution, Journal of Statistical Computation and Simulation, 80, 159-172. https://doi.org/10.1080/00949650802552402
- Castellares, F., Montenegro, L. C. and Cordeiro, G. M. (2013). The beta log-normal distribution, Journal of Statistical Computation and Simulation, 83, 203-228. https://doi.org/10.1080/00949655.2011.599809
- Cordeiro, G. M. and Lemonte, A. J. (2011). The beta Laplace distribution, Statistics and Probability Letters, 81, 973-82. https://doi.org/10.1016/j.spl.2011.01.017
- Cordeiro, G. M., Ortega, E. M. M. and Silva, G. O. (2012). The beta extendedWeibull family, Journal of Probability and Statistical Science, 10, 15-40.
- David, H. A. and Nagaraja, H. N. (2003). Order Statistics, Third Edition, Wiley, New Jersey,
- Fischer, M. J. and Vaughan, D. (2010). The beta-hyperbolic secant distribution, Austrian Journal of Statistics, 39, 245-258.
- Fisher, R. A. (1934). The effect of methods of ascertainment upon the estimation of frequencies. Annals of Eugenics, 6, 13-25. https://doi.org/10.1111/j.1469-1809.1934.tb02105.x
- Gusmao, F. R. S., Ortega, E. M. M. and Cordeiro, G. M. (2011). The generalized inverse Weibull distribution, Statistical Papers, 52, 591-619. https://doi.org/10.1007/s00362-009-0271-3
- Jones, M. C. (2004). Families of distributions arising from distributions of order statistics (with discussion), Test, 13, 1-43. https://doi.org/10.1007/BF02602999
- Lemonte, A. J. (2014). The beta log-logistic distribution, Brazilian Journal of Probability and Statistics, 28, 313-332. https://doi.org/10.1214/12-BJPS209
- Moraisa, A. L., Cordeiro, G. M. and Cysneiros, A. H. M. A. (2013). The Beta generalized logistic distribution, Brazilian Journal of Probability and Statistics, 27, 185-200. https://doi.org/10.1214/11-BJPS166
- Nadarajah, S., Bakouch, H. S. and Tahmasbi, R. (2011). A generalized Lindley distribution, Sankhya B, 73, 331-359. https://doi.org/10.1007/s13571-011-0025-9
- Nadarajah, S. and Kotz, S. (2004). The beta Gumbel distribution, Mathematical Problems in Engineering, 10, 323-332.
- Nadarajah, S. and Gupta, A. K. (2004). The beta Frechet distribution, Far East Journal of Theoretical Statistics, 14, 15-24.
- Parnaiba, P. F., Ortega, E. M. M., Cordeiro, G. M. and Pescim, R. R. (2011). The beta Burr XII distribution with application to lifetime data, Computational Statistics and Data Analysis, 55, 1118-1136. https://doi.org/10.1016/j.csda.2010.09.009
- Pescim, R. R., Demerio, C. G. B., Cordeiro, G. M., Ortega, E. M. M. and Urbanoa, M. R. (2010). The beta generalized half-normal distribution, Computational Statistics and Data Analysis, 54, 945-957. https://doi.org/10.1016/j.csda.2009.10.007
- Ramadan, M. M. (2013). A class of weighted Weibull distributions and its properties, Studies in Mathematical Sciences, 6, 35-45.
- Reiss, R. D. (1989). Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics, Springer-Verlag, Berlin.
- Rao, C. R. (1965). Weighted distributions arising out of methods of ascertainment. In Classical and Contagious Discrete Distributions, G. P. Patil (Eds). Calcutta: Pergamon Press and Statistical Publishing Society, 320-332.
- Shannon, C. E. (1948). A mathematical theory of communication, Bell System Technical Journal, 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Silva, G. O., Ortega, E. M. M. and Cordeiro, G. M. (2010). The beta modified Weibull, Distribution, Lifetime Data Analysis, 16, 409-430. https://doi.org/10.1007/s10985-010-9161-1
- Ye, Y., Oluyede, B. O. and Pararai, M. (2012). Weighted generalized beta distribution of the second kind and related distributions, Journal of Statistical and Econometric Methods, 1, 13-31.
Cited by
- Connection of Generalized Failure Rate and Generalized Reversed Failure Rate with Inequality Curves pp.1793-6446, 2018, https://doi.org/10.1142/S0218539319500062