• Title/Summary/Keyword: Maximum Displacement

Search Result 1,611, Processing Time 0.029 seconds

Comparison of condylar displacement between three biotypological facial groups by using mounted models and a mandibular position indicator

  • Ponces, Maria Joao;Tavares, Jose Pedro;Lopes, Jorge Dias;Ferreira, Afonso Pinhao
    • The korean journal of orthodontics
    • /
    • v.44 no.6
    • /
    • pp.312-319
    • /
    • 2014
  • Objective: Facial-type-associated variations in diagnostic features have several implications in orthodontics. For example, in hyperdivergent craniofacial types, growth imbalances are compensated by displacement of the condyle. When diagnosis and treatment planning involves centric relation (CR), detailed knowledge of the condylar position is desirable. The present study aimed to measure condylar displacement (CD) between CR and maximum intercuspation in three facial types of an asymptomatic orthodontic population. Methods: The study was conducted in 108 patients classified into three groups of 36 individuals each (27 women and 9 men; mean age, 20.5 years), based on the following facial patterns: hyperdivergent, hypodivergent, and intermediate. To quantify CD along the horizontal and vertical axes, the condylar position was analyzed using mounted casts on a semi-adjustable articulator and a mandibular position indicator. The Student t-test was used to compare CD between the groups. Results: Vertical displacement was found to be significantly different between the hyperdivergent and hypodivergent groups (p < 0.0002) and between the hyperdivergent and intermediate groups (p < 0.0006). The differences in horizontal displacement were not significant between the groups. In each group, vertical CD was more evident than horizontal displacement was. Conclusions: All facial types, especially the hyperdivergent type, carried a significantly high risk of CD. Therefore, the possibility of CD should be carefully evaluated and considered in the assessment of all orthodontic cases in order to accurately assess jaw relationships and avoid possible misdiagnosis.

A Study on the Displacement Current of Long Chain Alkylamines on the Water Surface for Preparation of Functional Polyimide Films. (기능성 폴리이미드막 제작에 따른 수면상의 장쇄 알킬아민의 변위전류에 관한 연구)

  • Park, Keun-Ho;Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 1998
  • Displacement current measuring technique has been applied on the study of monolayers of functional polyimide containing azobenzene derivatives. The displacement current was generated from monolayers on the water surface by monolayer compression and expansion. Displacement current was generated when the area per molecule was about $70{\AA}^2$ and $100{\AA}^2$. Displacement currents were investigated in connection with monolayer of long chain alkylamines. It was found that the maximum of displacement current appeared at the molecular area just before the initial rise of surface pressure in compression cycles of polyamic acid and long chain alkylamines.

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

Rational analysis model and seismic behaviour of tall bridge piers

  • Li, Jianzhong;Guan, Zhongguo;Liang, Zhiyao
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.131-140
    • /
    • 2014
  • This study focuses on seismic behaviour of tall piers characterized by high slender ratio. Two analysis models were developed based on elastic-plastic hinged beam element and elastic-plastic fiber beam element, respectively. The effect of the division density of elastic-plastic hinged beam element on seismic demand was discussed firstly to seek a rational analysis model for tall piers. Then structural seismic behaviour such as the formation of plastic hinges, the development of plastic zone, and the displacement at the top of the tall piers were investigated through incremental dynamic analysis. It showed that the seismic behaviour of a tall pier was quite different from that of a lower pier due to higher modes contributions. In a tall pier, an additional plastic zone may occur at the middle height of the pier with the increase of seismic excitation. Moreover, the maximum curvature reaction at the bottom section and maximum lateral displacement at the top turned out to be seriously out of phase for a tall pier due to the higher modes effect, and thus pushover analysis can not appropriately predict the local displacement capacity.

Study on the Thermal Deformation of the Air-conditioner Indoor Unit Assembly Using 3D Measurement and Finite Element Analysis (에어컨 실내기 사출 조립품의 열 변형 3D측정과 유한요소해석)

  • Hong, Seokmoo;Hwang, Jihoon;Kim, Cheulgon;Eom, Seong-uk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.251-255
    • /
    • 2015
  • Thermal deformation, such as bending and twisting, occurs among the polymer parts of air-conditioner indoor units because of repetitive temperature change during heating operation. In this study, a numerical method employing finite-element analysis to efficiently simulate the thermal deformation of an assembly is proposed. Firstly, the displacement of an actual assembly produced by thermal deformation was measured using a 3D optical measurement system. The measurement results indicated a general downward sag of the assembly, and the maximum displacement value was approximately 1 mm. The temperature distribution was measured using a thermographic camera, and the results were used as initial-temperature boundary conditions to perform temperature-displacement analysis. The simulation results agreed well with the measured data. To reduce the thermal deformation, the stiffness increased 100%. As the results, the maximum displacement decreased by approximately 5.4% and the twisting deformation of the holder improved significantly.

Effect of near and far-field earthquakes on RC bridge with and without damper

  • Soureshjani, Omid Karimzade;Massumi, Ali
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.533-543
    • /
    • 2019
  • This paper presents a study on the behavior of an RC bridge under near-field and far-field ground motions. For this purpose, a dynamic nonlinear finite element time history analysis has been conducted. The near-field and far-field records are chosen pairwise from the same events which are fits to the seismic design of the bridge. In order to perform an accurate seismic evaluation, the model has been analyzed under two vertical and horizontal components of ground motions. Parameters of relative displacement, residual displacement, and maximum plastic strain have been considered and compared in terms of near-field and far-field ground motions. In the following, in order to decrease the undesirable effects of near-field ground motions, a viscous damper is suggested and its effects have been studied. In this case, the results show that the near-field ground motions increase maximum relative and residual displacement respectively up to three and twice times. Significant seismic improvements were achieved by using viscous dampers on the bridge model. Somehow under the considered near-field ground motion, parameters of residual and relative displacement decrease dramatically even less than the model without damper under the far-field record of the same ground motion.

Seismic vibration control of bridges with excessive isolator displacement

  • Roy, Bijan K.;Chakraborty, Subrata;Mishra, Sudib K.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1451-1465
    • /
    • 2016
  • The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges have been extensively studied in the past. It is well established in those studies that the performance of BI system is largely dependent on the characteristics of isolator yield strength. For optimum design of such systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is usually performed with reference to a problem of unconstrained optimization without imposing any restriction on the maximum isolator displacement. In this regard it is important to note that the isolator displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the framework of statistical linearization of the related nonlinear random vibration problem. A simply supported bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance of the isolated bridge compared to that of obtained by the conventional unconstrained optimization approach.

A new analytical model to determine dynamic displacement of foundations adjacent to slope

  • Varzaghani, Mehdi Imani;Ghanbari, Ali
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.561-575
    • /
    • 2014
  • Estimating seismic displacements has a great importance for foundations on or adjacent to slope surfaces. However, dynamic solution of the problem has received little attention by previous researchers. This paper presents a new analytical model to determine seismic displacements of the shallow foundations adjacent to slopes. For this purpose, a dynamic equilibrium equation is written for the foundation with failure wedge. Stiffness and damping at the sliding surface are considered variable and a simple method is proposed for its estimation. Finally, for different failure surfaces, the calculated dynamic displacement and the surfaces with maximum strain are selected as the critical failure surface. Analysis results are presented as curves for different slope angles and different foundation distances from edge of the slope and are then compared with the experimental studies and software results. The comparison shows that the proposed model is capable of estimating seismic displacement of the shallow foundations adjacent to slopes. Also, the results demonstrate that, with increased slope angle and decreased foundation distances from the slope edge, seismic displacement increases in a non-linear trend. With increasing the slope angle and failure wedge angle, maximum strain of failure wedge increases. In addition, effect of slope on foundation settlement could be neglected for the foundation distances over 3B to 5B.

The analysis design and operating characteristics of VCM actuator for auto focusing (자동초점 조절용 VCM 액추에이터 구동특성 분석)

  • Park, J.M.;Lim, H.W.;Chae, B.;Kim, D.G.;Kim, P.H.;Cho, G.B.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.447-448
    • /
    • 2007
  • Product development is consisting by trend that accommodate almost function digital cam in camera phone that can speak of Mobile appliance, and competition about number of elemental area of image sensor is consisting for market prior occupation between these. Propose in this research and small size camera phone self-focusing adjustment actuator that do city manufacture is similar with general storehouse pickup actuator drive way, but selected in cylindrical to reduce space that lens holder occupies because there is restriction loading of lens and space enemy. Target number of research established that execute drive displacement more than $600{\mu}m$ in 2.75V that is house voltage that is used in Mobile device that is general. Also, described about maximum transfer displacement characteristic, displacement response characteristic, hysteresis, response characteristic, smallest transfer step characteristic, actuator's drive characteristic that is manufactured to examination item of maximum consumption electric power by special quality estimation system that apply laser displacement sensor that produce itself to evaluate city manufactured actuator's special quality.

  • PDF

Behaviour of a plane joint under horizontal cyclic shear loading

  • Dang, Wengang;Fruhwirt, Thomas;Konietzky, Heinz
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.809-823
    • /
    • 2017
  • This paper describes lab test results of artificial rock-like material samples having a plane joint. Cyclic shear tests were performed under different normal loads and different shear displacement amplitudes. For this purpose, multi-stage normal loading tests (30 kN, 60 kN, 90 kN, 180 kN, 360 kN and 480 kN) with cyclic excitation at frequency of 1.0 Hz and different shear displacement amplitudes (0.5 mm, 1.0 mm, 2.0 mm, 4.0 mm, 5.0 mm, and 8.0 mm) were conducted using the big shear box device GS-1000. Experimental results show, that shear forces increase with the increase of normal forces and quasi-static friction coefficient is larger than dynamic one. With the increase of normal loads, approaching the peak value of shear forces needs larger shear displacements. During each cycle the normal displacements increase and decrease (rotational behavior in every cycle). Peak angle of inclination increases with the increase of normal load. A phase shift between maximum shear displacement and maximum shear force is observed. The corresponding time shift decreases with increasing normal load and increases with increasing shear displacement amplitudes.