• Title/Summary/Keyword: Maximum Deformation

Search Result 1,230, Processing Time 0.023 seconds

Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis (대변형 유한요소해석을 위한 요소망 자동 생성기법)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

A Study of the Development of a simulator for Deformation of the Steel Plate in Line Heating (선상가열시 강판의 변형 추정도구 개발을 위한 기초연구)

  • Seo, Do-Won;Yang, Pack-Dal-Chi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.213-216
    • /
    • 2006
  • During the last decade several different methods have been proposed for the estimation of thermal deformations in the line heating process. These are mainly based on the assumption of residual strains in the heat-affected zone or simulated relations between heating conditions and residual deformations. However these results were restricted in the application from the too simplified heating conditions or the shortage of the data. The purpose of this paper is to develop a simulator of thermal deformation in the line heating using the artificial neural network. Two neural network predicting the maximum temperature and deformations at the heating line are studied. Deformation data from the line heating experiments are used for learning data for the network. It was observed that thermal deformation predicted by the neural network correlate well with the experimental result.

  • PDF

A Study on the Deformation of the Moving Pressure Plate in a Balanced Type Vane Pump (압력 평형형 베인 펌프의 가동 압력판 변형에 관한 연구)

  • 한동철;조명래;박신희;최상현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.277-285
    • /
    • 1998
  • This paper presents the deformation characteristics of the moving pressure plate in a balanced type vane pump that widely used automotive power steering systems. Moving pressure plate can control the clearance between rotor and plate in accordance with load pressure variation; it always guarantees that pump to have optimal volumetric efficiency. In this paper, firstly, we calculate the acting force on the pressure plate, which is used to determine the angular position and load condition for analyzing the deformation of pressure plate. Secondary, finite element method is used for the deformation analysis. As results of acting force analysis, it is found that maximum difference of forces occurs at angular position 28$\circ$ from the small arc center of cam ring and load pressure is a dominant factor to affect acting force variation. The deformation of pressure plate increases as load pressure increases. At high load pressure, the deformation of pressure plate becomes larger than the initial clearance between rotor and plate. Therefore, it is required to design the plate for controlling the deformation.

  • PDF

Three-dimensional finite element analysis of the deformation of the human mandible: a preliminary study from the perspective of orthodontic mini-implant stability

  • Baek, Sun-Hye;Cha, Hyun-Suk;Cha, Jung-Yul;Moon, Yoon-Shik;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.42 no.4
    • /
    • pp.159-168
    • /
    • 2012
  • Objective: The aims of this study were to investigate mandibular deformation under clenching and to estimate its effect on the stability of orthodontic mini-implants (OMI). Methods: Three finite element models were constructed using computed tomography (CT) images of 3 adults with different mandibular plane angles (A, low; B, average; and C, high). An OMI was placed between #45 and #46 in each model. Mandibular deformation under premolar and molar clenching was simulated. Comparisons were made between peri-orthodontic mini-implant compressive strain (POMI-CSTN) under clenching and orthodontic traction forces (150 g and 200 g). Results: Three models with different mandibular plane angles demonstrated different functional deformation characteristics. The compressive strains around the OMI were distributed mesiodistally rather than occlusogingivally. In model A, the maximum POMI-CSTN under clenching was observed at the mesial aspect of #46 (1,401.75 microstrain [${\mu}E$]), and similar maximum POMI-CSTN was observed under a traction force of 150 g (1,415 ${\mu}E$). Conclusions: The maximum POMI-CSTN developed by clenching failed to exceed the normally allowed compressive cortical bone strains; however, additional orthodontic traction force to the OMI may increase POMI-CSTN to compromise OMI stability.

A Study on the Stress and Deformation Behavior of an Alarm Valve using Finite Element Method (유한요소법을 이용한 알람밸브의 응력 및 변형거동에 관한 연구)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.14-17
    • /
    • 2012
  • The stress and deformation behavior of an alarm valve has been analyzed using a finite element method. The strength safety of an alarm valve is calculated for the given maximum test pressure of 2.0MPa. The FEM computed maximum stress of an alarm valve is only 6.1% of yield strength, 370MPa and 4.6% of tensile strength, 485MPa, which are occurred at the corner part between a cover flange and a valve body. And the maximum deformation of $12{\mu}m$ was developed at the middle part of an alarm valve. These results mean that a typical alarm valve was designed with a excessively high strength safety, which may lead to an increase of a weight and a dimension.

Performance Analysis of The KALIMER Breakeven Core Driver Fuel Pin Based on Conceptual Design Parameters

  • Lee Dong Uk;Lee Byoung Oon;Kim Young Gyun;Lee Ki Bog;Jang Jin Wook
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.356-368
    • /
    • 2003
  • Material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the updated driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the end of life is predicted to be $68.61\%$ and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is $1.93\%$, satisfying the preliminary design criterion ($3\%$) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc.

A Study on the Structural Stability and Effectiveness of Rope Cutter for Ship's Propeller (선박추진기용 로프절단장치의 구조 안정성 및 효용성에 관한 연구)

  • Kim, Jun-Soo;Seul, Youngyoon;Lee, Du-Yong;Park, Kitae;Kim, Tae Hun;Choi, Jae-Hyuk;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.550-556
    • /
    • 2021
  • The scissor-type rope cutter is the most widely used amongst all kinds of commercially available rope cutters in Korea. In this study, we performed finite element analysis on the scissor-type rope cutter. We determined the structure of the cutter that would ensure its stable operation in various situations involving rope entanglement, and verified its effectiveness by testing it in the lab and in an actual ship. These investigations revealed that when the propeller shaft was not rotated by rope entanglement, the constant torque generated by the engine resulted in the torsion of the rope cutter and maximum deformation in the lower blade, which was not restricted by finite element analysis. With increasing blade thickness, the maximum values of deformation and equivalent stress decreased, resulting in a rise in the safety factor. At the constant blade thickness, the effect of the torque variations on the maximum equivalent stress and the maximum deformation is independent of the position of the external force of the rope cutter and decreases in direct proportion. The results of this study confirmed that the rope-cutter structure determined by analysis could lead to a hassle-free removal of ropes and fishing nets under all conditions and environments.

Analysis of characteristics of Deformation in structural fashion - With a focus on haute couture collections in 2008 S/S ~ 2019 F/W - (구조적 의상에 나타난 데포르마시옹의 특성 분석 - 2008 SS~2019 FW 오뜨꾸띄르를 중심으로 -)

  • Lee, So-Young
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.22 no.3
    • /
    • pp.63-74
    • /
    • 2020
  • Modern clothes are part of formative arts and express experimentation and originality. This tendency is especially prominent in structural fashion. This study set out to analyze structural fashion in various aspects, examining and analyzing the expressive and formative characteristics of Deformation and contribute to the development of creative fashion design. The approach of peer debriefing was used with three fashion experts to identify structural clothes in the women's haute couture collections from a total of 24 seasons from S/S of 2008 to F/W of 2019. The clothes with Deformation characteristics were then identified to analyze expressive and formative characteristics. The expressive characteristics of Deformation in structural clothes were exaggeration, distortion, and recombination. Exaggeration was expressed with exaggerated sizes, forms, and excessive use. Distortion was expressed with distorted forms and functions and through optical illusions. Recombination was expressed with the recombination of forms and roles. The formative characteristics of Deformation were maximum, playfulness, and unfamiliarity. The study connected the expressive characteristics to the formative ones and examined them simultaneously, finding that "distortion" and "playfulness" represented the expressive and formative characteristics, respectively. The characteristics of Deformation are expressed in various ways in structural fashion. If they are considered, they will make valuable contributions to creative ideas.

A study on structural analysis of GRINDING DISC ASS'Y for secondary battery material decompositiom (이차전지 원료 해쇄용 GRINDING DISC ASS'Y 구조해석에 대한 연구)

  • Yun, Dong-Min;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2022
  • Globally, as population growth and economic development continue, resource consumption is increasing rapidly. As an alternative to electric vehicles was suggested as the environmental pollution problem emerged, the number of registered electric vehicles in Korea increased by more than 137 times compared to 2013. Secondary batteries are expected to expand into various markets such as small IT devices and electric vehicles, and the most important part of electric vehicles is the battery (secondary battery). Therefore, in this study, to analyze the stability of the CSM (Classifier Separator Mill) grinding disc that crushes secondary battery raw materials, structural analysis and vibration analysis of the 1st to 4th grinding discs and the final model were performed. The change of bending by the weight of the Grinding Disc is at least 0.065㎛ and maximum 0.075㎛, and the change by the standard gravity is judged to be very low. The strain is at least 0.00031㎛/㎛ and maximum 0.00078㎛/㎛, and even if the number of Hamer increases, the change by the weight is judged to be insignificant. When the Grinding Disc rotates at a maximum of 6000rpm, the deformation and deformation rate of the first to third models are similar, but the fourth model (Hamer 10EA) is more than three times and the final model (Hamer 12EA) is about four times. However, the maximum deformation is 28.21㎛, which is considered to be insignificant when the change is 6000rpm. Six modes of natural Frequency analysis of the 1st~4th order and final model of the grinding disc appeared to be bent or twisted.

Analysis of the Maximum Principal Strain on the Splitting Surface by Blasting Detonation Pattern (발파 기폭 패턴에 따른 분할 단면의 최대주변형률 분석)

  • Song, Jeong-Un;Kim, Seung-Kon;Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.1-13
    • /
    • 2019
  • In this study, Rock deformation on the splitting surface was investigated by using the finite element code relating to the blasting in urban area. The maximum principal strain according to the blasting detonation pattern was analyzed by the modeled blast section, and deformation of the splitting surface formed by the numerical analysis and the real blasting were compared. As a result, it was found that the maximum principal strain was observed a difference according to the blasting detonation pattern on the splitting surface, and the splitting surface was showed a similar waveform both the numerical analysis and the real blasting.