• Title/Summary/Keyword: Maximum Cutting Temperature

Search Result 45, Processing Time 0.026 seconds

The relationship between residual stresses and transverse weld cracks in the plate (후판용접부의 잔류응력과 횡균열의 상관관계)

  • 이해우;강성원;박종진
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.263-265
    • /
    • 2003
  • The transverse crack, a type of cold crack, occurs perpendicular to the axis of the weld interface, longitudinal residual stresses ($\sigma$k direction) are more important in transverse crack occurrence from my own experience. Specimens were fabricated and welded under actual construction conditions, and then residual stresses of longitudinal stresses were measured for different welding conditions with SAW and FCAW process. The residual stress values for the specimen welded Interpass temperature below 30$^{\circ}C$ was higher than the specimen welded interpass temperature of 100~120$^{\circ}C$. And also the residual stress values for a specimen measured at weld surface, as welded condition, was higher than that of longitudinal residual stresses that was measured from a small test piece, due to the residual stress was relieved in the process of the cutting and machining. Transverse weld cracks were detected in the area of the maximum residual stresses both SAW and FCAW process.

  • PDF

Effect of Temperature on Cooking Rate of Soybean (콩의 취반속도에 미치는 온도의 영향)

  • Kim, Sung-Kon;Cho, Kwang-Ho;Kim, Jong-Goon
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.372-375
    • /
    • 1986
  • The temperature dependence of the cooking rate of soybean cotyledon was investigated by cooking samples at $106^{\circ}C-121^{\circ}C$ and by measuring the maximum cutting force. The cooking of soybean followed a first-order reaction and the reaction rate constant was approximately doubled by increase of cooking temperature by 4 or $5^{\circ}C$. The z-value for softening of the soybean, which was calculated from the time-temperature combinations that gave the same degree of cooking, was $13.3^{\circ}C$.

  • PDF

Effect of the Autumnal Cutting Times on the Regrowth , Accumulation of Carbohydrate and Dry Matter Yield of Italian ryegrass ( Loium multiflorum ) (Italian ryegrass의 추계예취시기가 목초의 재생 , 탄수화물축적 및 건물수량에 미치는 영향)

  • 안계수
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 1985
  • This experiment was carried out to study the effect of the autumnal cutting times on the regrowth, the accumulated carbohydrate and dry matter yield of Italian ryegrass The results were summarized as follows: 1. In dry matter yield, the plot of earlier cutting was shown the highest yield (p<0.05), and that of the last-cutting was shown lower yield of dry matter than that the none-cutting plot. 2. TSC (Total Water Soluble Carbohydrate) content slightly decreased after the first cutting and gradually increased according to the regrowth, and then decreased again to the second cutting time. And also the TSC content levels of stubble, stem and leaf at one week before falling to sub-zero temperature were all the highest in the eariler cutting plot (p<0.01), and there was significant correlation between the TSC content level and the second harvested dry matter yield (p<0.05). 3. CGR (Crop Growth Rate) was decreased below $8^{\circ}C$. RLGR (Relative Leaf area Growth Rate) and NAR (Net Assimilation Rate) were both high during 30 days after regrowth, and low after regrowth in all plots. LAI (Leaf Area Index) rapidly increased during 50 days after cutting, and then slowly increased in all the plots, and maximum LAI was 3.4-5.8. Also dry matter yield increased in the plots having a high LAI to 70 days after cutting. 4. It was recognized that there were significant correlation between TSC, LAI, CGR, NAR, LWR (Leaf Weight Ratio) and the second harvested dry matter yield during the low temperature periods, and the degree of contribution to dry matter yield was in order of LWR>LAI>TSC>NAR>CGR.

  • PDF

The Effects of Sintering Temperature Influence on the Mechanical Property and Microstructure of Dental Zirconia Block (치과용 지르코니아 블록의 소결온도가 기계적 특성과 미세구조에 미치는 영향)

  • Jo, Jun-Ho;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • Purpose: Generally dental technicians clinically decide the sintering temperature of zirconia artificial teeth to match the color of the teeth. However, the sintering temperature influence the microstructure and mechanical strength of ceramic body. In this study, to evaluate the free choice of sintering temperature which leads to color the problems in zirconia false teeth, the variation of microstructure, mechanical strength, and colortone of zirconia ceramics according to the change of sintering temperature was investigated. Methods: Bar type specimens were prepared from commercial zirconia blocks by cutting and polishing into $0.8cm(L){\times}1.0cm(W){\times}4.8cm(H)$. Specimens were fired from 1,400 to $1,700^{\circ}C$ at $50^{\circ}C$ intervals and held for 1hour at highest temperature. Apparent porosity, water absorption, firing shrinkage, bulk density, bend strength, whiteness were tested. Microstructures were observed by SEM. Results: When fired above $1450^{\circ}C$, all specimens showed 0% apparent porosity and water absorption, 20% firing shrinkage, and $6.1g/cm^3$ bulk density regardless of firing temperatures. SEM photomicrographs showed grain growth of zirconia occurred above $1,600^{\circ}C$. Whiteness was also largely changed above this temperature. Maximum bend strength of 1,05MPa was obtained at $1,550^{\circ}C$. Bend strength lowered slightly above this temperature and showed $950{\ss}\acute{A}$ at $1,700^{\circ}C$. Conclusion: In order to fit the colortone of zirconia artificial teeth, arbitrary choice of firing temperature higher than $1,500^{\circ}C$, up to $1,700^{\circ}C$ did not influence the mechanical strength.

Analysis of Thermal Displacement of PCBN Tool Holder for Machining Accuracy in Hard Turning (하드터닝에서 CBN 공구홀더의 열변형이 가공정밀도에 미치는 영향)

  • 노승국;이찬홍;하재용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.363-366
    • /
    • 2003
  • The hard turning is a turning operation performed in high strength alloy steels (HRC>30) in order to reach surface roughness close to those obtained in grinding. This is possible because of availability of improved tool materials (polycrystalline cubic boron nitride. PCBN), ad more rigid machine tools. According to many previous work of hard turning mechanism, the maximum temperature of cutting can be raised up to 100$0^{\circ}C$. As the heat generation rate is very high, the thermal displacement of tool holder cannot be negligible. Therefore, the aim of this paper is to analyze effects of high heat generation at CBN tool tip to the thermal displacement of a tool holder in hard turning and finally geometric accuracy. The thermal behavior of a CBN tool holder is investigated by numerical simulation and experiment, and the result shows thermal elongation of microns order is possible during hard turning process.

  • PDF

Cooking Properties of Some Korean Soybeans (우리나라 콩의 조리 성질)

  • Kim, Sung-Kon;Kim, Jong-Goon
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.699-703
    • /
    • 1988
  • Cooking properties of one variety(Bongui) and two cultivars(KW-12 and KLS-77005-1) were compared. Soybeans were presoaked in distilled water at room temperature for 16 hr and cooked in an autoclave at $106^{\circ}C{\sim}121^{\circ}C$. The cooking rate was calculated by the maximum cutting force of the cotyledons. The cooking time for all cultivars were 150 min at $106^{\circ}C$ and 14 min at $121^{\circ}C$. The cooking rate constants were similar among cultivars. The z-value which was calculated from the time-temperature combinations that gave the same degrees of cooking for KW-12 was $13.1^{\circ}C$ and the others being $11.5^{\circ}C$.

  • PDF

A Study on the Soil Respiration in Cutting and Uncutting Areas of Larix leptolepis Plantation (잎갈나무조림지의 벌목지와 비벌목지의 토양호흡에 관한 연구)

  • Lee, Kyu-Jin;Mun, Hyeong-Tae
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1353-1357
    • /
    • 2010
  • Quantification of the ecosystem respiration is essential in understanding the carbon cycling of natural and disturbed landscapes. Soil respiration and some environmental factors which affect soil respiration were investigated in a Larix leptolepis plantation inKongju, Korea. Soil respiration was measured at midday of the $15^{th}$ and $30^{th}$ day of every month from May to December in a non-cutting area (Control) and a cutting area (Treatment) with IRGA Soil Respiration Analyzer. Throughout the study period, average soil temperature and water content were $23.3{\pm}0.5^{\circ}C$ and $27.76{\pm}7.12%$ for control, and $25.9{\pm}3.1^{\circ}C$ and $24.55{\pm}5.12%$ for treatment, respectively. There was a positive correlation ($R^2$=0.8905) between soil respiration and soil temperature in the study area. However, there was no significant correlation between soil respiration and soil moisture ($R^2$=0.4437). The seasonal soil respiration increased in the summer and decreased in the winter. In August, maximum soil respirations in the control and treatment areas were $0.82{\pm}0.13$ and $1.32{\pm}0.10$ $gCO_2{\cdot}^{-2}{\cdot}r^{-1}$, respectively. Total amounts of $CO_2$ evolution in the control and treatment areas from May to December in 2008 were 2,419.2 and 3,610.8 $CO_2g{\cdot}m^{-2}$, respectively. The amount of soil respiration in the treatment area was 49.3% greater than in the control. Increased soil respiration in the treatment area may be due to increased soil temperature, which drives increased microbial decomposition. According to our present investigation, forest cutting will increase the atmospheric $CO_2$ by increasing soil respiration.

Habitat Characteristics and Distribution of Cymbidium kanran Native to Jejudo, Korea (제주한란의 자생환경 특성 및 분포에 관한 연구)

  • Lee, Jong Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.40-49
    • /
    • 2004
  • This work carried out to define the characteristic of Cymbidium kanran habitat at Mt. Halla in Jejudo, Korea from the ecological point of view including geological and topographical features, air and soil temperature, relative humidity, fluctuations of light intensity, habitat vegetation, distribution altitude, area limit, and etc. And another goal of this study consider the conservation counterplan of the cymbidium habitat. Natural distribution areas of the cymbidium were observed more abundantly on the well drained south and east-facing slopes. Soil acidity was ranged from pH 4.1 to 5.3, and electric conductivity was ranged from 176.4 to 299.9 us/cm (average 215.3 us/cm). Base-saturation percentage of the habitat soil was below 50%, bulk density 0.42g/$cm^2$, particle density 2.05g/$cm^2$, humus content 26%, total nitrogen 0.82%, available phosphate 4.2 mg/kg, exchangeable potassium 0.63 Cmol/kg, calcium 0.44 Cmol/kg and magnesium 0.67 Cmol/kg. Annual mean air temperature was $15.4^{\circ}C$, however, air temperature was ranged $11.7{\sim}18.2^{\circ}C$ in spring, $21.2{\sim}23.8^{\circ}C$ in summer, $12.8{\sim}22.0^{\circ}C$ in fall and $5.5{\sim}7.8^{\circ}C$ in winter season. Annual mean soil temperature at depth of 10cm was $13.2^{\circ}C$ And minimum value was recorded $4.7^{\circ}C$ on January, and maximum value $22.5^{\circ}C$ on August. Relative humidity was ranged 90.8~94.7% in summer, 80.8~91.5% in fall and 77.6~84.2% in winter season. Minimum value was 56.5% on December, and maximum value was 100% on July and August. Light intensities were ranged from 400 to 1,800 lux at the greater part of Cymbidium kanran sites in Jejudo. Summer regarded as an lower light intensities was recorded to be range of 500~600 lux; however, autumn and winter were shown higher light regimes ranged from 3,500 to 3,800 lux. Therefore, one must be suprised that the cymbidium grow at the light condition of 6 lux (minimum) or 10,000 lux (maximum). Tree species keeping higher frequency rate and density were Eurya japonica, Camellia japonica, Castanopsis cuspidata, Carpinus laxiflora and Pinus densiflora. Number of trees growing in a 5${\times}$5m quardrat was 35 as an average, and proportion of evergreen versus deciduous was 5:1. Distribution altitude of the orchid habitat was ranged from 120m (low) to 840m (high) from sea level on the south facing slope of Mt. Halla, and was ranged eastern borderline of Gujwaup, Bukjejugun to western boundaries of Jungmundong, Seogwipo city. For the stable conservation of Cymbidium kanran habitat, sunlight regimes must be increased more by means of cutting trees or twigs in the site.

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings (초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구)

  • Heo, Sung-Bo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

Physical and Chemical Characteristics of Oilsands Bitumen Using Vacuum Distillation (감압증류장치를 이용한 Oilsands Bitumen의 물리화학적 특성 연구)

  • Kim, Kyoung-Hoon;Jeon, Sang-Goo;Roh, Nam-Sun;Kim, Kwang-Ho;Shin, Dae-Hyun;Park, Hyo-Nam;Han, Myung-Wan
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • This study was carried out to investigate physical and chemical characteristics of the distillates and residue of Athabasca oilsand bitumen obtained from Canada, using a vacuum distillation unit. The distillates and residue produced from the vacuum distillation were characterized through atomic analysis, SARA analysis, and measurement of boiling point distribution, molecular weight, and API gravity. The vacuum distillation equipment consisted of a 6-litter volume vessel, a glass-packed column, a condenser, a reflux device, a flask fer collecting distillates, and a temperature controller. The cutting of distillates was performed with four steps under the condition of full vacuum and maximum temperature of $320^{\circ}C$. The results showed that the sulfur amount and average molecular weight of the distillates were significantly reduced compared to those of oilsand bitumen. As the cutting temperature increased, the hydrogen amount decreased but the sulfur amount and average molecular weight increased in the distillates.