• Title/Summary/Keyword: Maximum Cure

Search Result 93, Processing Time 0.023 seconds

Evaluation of Mechanical Property Variation of Epoxy Based Compliant Polymer Concretes Exposed to UV Light (에폭시 기반 연성 폴리머 콘크리트의 자외선 노출에 의한 기계적 물성평가)

  • Roh, In-Taek;Jung, Kyung-Chae;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.236-241
    • /
    • 2014
  • This paper aims to evaluate material property variation of polymer concretes under ultra-violet exposure condition. The components and mixing ratio of the polymer composite specimens were determined by the previous research results. The equivalent UV exposure time was calculated with the consideration of the power of metal halide lamp and maximum 3 years were selected for the experiments. From the tests, it was found that the generated heat during UV exposure affected much the material properties of polymer concrete by means of post cure. As a result, the compressive strength increased and ductility factor decreased.

Structural Safety Evaluation of Concrete Pump Cars (콘크리트 펌프카의 구조적 안전성 평가)

  • Baek, So-Jung;Kim, Nam-Jin;Choi, Hyoung-Gyu;Choi, Jin-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • Concrete pump cars are a type of construction equipment that continuously supplies concrete using hydraulic pressure. When manually casting concrete, there may be a problem in the final quality of the concrete due to differences in the degree of cure between the pre-poured and subsequent concretes. Concrete pump cars are the most efficient machines to supply concrete in the shortest time; however, it is difficult to calculate their margin of safety during operation. In this paper, we verified the structural safety of the concrete pump car using a static/dynamic analysis at various position angles. Next, these results were compared with experimental results; strains using strain gages were compared with the strains measured using FEM software to verify the static analysis. In addition, the maximum displacement during the pumping was measured and it was used for fatigue analysis to evaluate the dynamic structural safety.

Strength Properties of Sandwich Panel core using Cellular lightweight Aggregate according to Curing Temperature (양생온도에 따른 다공성 경량골재를 활용한 샌드위치 패널심재의 강도 특성)

  • 노정식;김대규;도정윤;문경주;소양섭
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.35-38
    • /
    • 2003
  • The purpose of this study is to investigate the manufacture of light weight concrete panel using the artificial light-weight aggregate as a part of the substitution of foamed styrene and polyurethane because of narrow allocable temperature Bone in use. The experimental parameter of this study is 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity and the type of admixture such as cement, 6mm glass fiber and St/BA emulsion. Testing item is compressive and flexural strength and strength of specimen cured at standard condition is compared to that of specimen cured at 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity. As a result or this, it was revealed that the maximum or strength is developed in 6$0^{\circ}C$ or cure temperature at 100% relative humidity in case of the most of the specimen. Specimens modified by St/BA emulsion show the highest development of strength dependent on the curing tmeperature. So, it seems to be effective that evaporation curing method shoud be considered to curing the specimen as the panel core.

  • PDF

Dental Properties of Hydroxyapatite Filled Polymer Composite (수산화인회석이 충전된 고분자 복합체의 치과적 물성)

  • Kim Oh-Young;Seo Ki-Taek
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.135-139
    • /
    • 2006
  • To evaluate the dental restorative application of polymer composites filled with hydroxyapatite (HAP) which is an inorganic component of human bone material, dental properties of the polymer composites were investigated. A visible light system was utilized to activate the acrylate resin matrix of the composites. Maximum loading percentage of HAP in composite was 65 wt% and the depth of cure was 6.0 mm which can be applicable for dental restoration. With increasing the HAP content, degree of conversion of polymer composites was slightly decreased, however, polymerization shrinkage value was not varied. Diametral tensile strength value was enhanced with an increase of HAP content, however, there was no strict trend between flexural strength and HAP concentration. Anyhow, polymer composites prepared herein have superior mechanical properties sufficient specifications applicable to dental materials.

Efficacy of Bacteriophage Treatment in Murine Burn Wound Infection Induced by Klebsiella pneumoniae

  • Kumari, Seema;Harjai, Kusum;Chhibber, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.622-628
    • /
    • 2009
  • In the present study, the therapeutic potential of purified and well-characterized bacteriophages was evaluated in thermally injured mice infected with Klebsiella pneumoniae B5055. The efficacy of five Klebsiella phages (Kpn5, Kpn12, Kpn13, Kpn17, and Kpn22) was evaluated on the basis of survival rate, decrease in bacterial counts in different organs of phage-treated animals, and regeneration of skin cells as observed by histopathological examination of phage-treated skin. Toxicity studies performed with all the phages showed them to be non-toxic, as no signs of morbidity and mortality were observed in phage-treated mice. The results of the study indicate that a single dose of phages, intraperitoneally (i.p.) at an MOI of 1.0, resulted in significant decrease in mortality, and this dose was found to be sufficient to completely cure K. pneumoniae infection in the burn wound model. Maximum decrease in bacterial counts in different organs was observed at 72 h post infection. Histopathological examination of skin of phage-treated mice showed complete recovery of burn infection. Kpn5 phage was found to be highly effective among all the phages and equally effective when compared with a cocktail of all the phages. From these results, it can be concluded that phage therapy may have the potential to be used as stand-alone therapy for K. pneumoniae induced burn wound infection, especially in situations where multiple antibiotic-resistant organisms are encountered.

Expanding the MCS of Refinery Process Compressor through Operating-Speed Balancing at 10,500 rpm (정유공정 압축기의 10,500 rpm 운전속도 밸런싱을 통한 MCS의 확장)

  • Lee, An-Sung;Kim, Byung-Ok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.41-46
    • /
    • 2009
  • This paper deals with the operating-speed (high-speed) balancing of a refinery gasoline HDS (hydrodesulfurization) process recycle-gas 8-stages compressor rotor. A low-speed balancing condition of the rotor was measured as maintaining the G2.5 level. But an inspection run of operating-speed balancing condition, using tilting-pad journal bearings of actual use, showed that while it could be continuously-operated safely at a rated speed of 10,500 rpm, the rotor would not be able to run over 11,000 rpm as the vibration increased very sharply, approaching 11,000 rpm. In order to cure that a series of operating-speed balancing, which first calculated balance correction-weights by applying the influence coefficient measured and calculated at 10,500 rpm and then implemented correction works, was carried-out. The final operating-speed balancing results showed that the vibrations at the bearing pedestals represented very good levels of 0.2 mm/s by decreasing to as much as the 1/10 of the original vibrations and particularly, even at a targeted maximum continuous operating speed, MCS, of 11,500 rpm the vibrations represented about 1 mm/s, which is the operating-speed balancing vibration specification of API. Therefore, the expansion of MCS was successfully accomplished through the operating-speed balancing.

Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성)

  • Han, Beom-Jeong;Jeong, Yong-Chai;Kim, Sung-Ryul;Kim, Ro-Won;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

The Effect of the Exercise Remedy on the Increase of Muscular Strength in the Low Back Pain Patients (LBP(Low Back Pain)대상자의 근력증가에 미치는 운동 효과에 관한 연구)

  • Park, Jung-Sik;Cha, Jong-Ho;Shin, Sang-Yol
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.49-54
    • /
    • 2010
  • WMSD occurs by accumulating the visible position and movements. Therefore, it is easier to prevent WMSD from occurring than other diseases when each employee is aware of the factors which cause WMSD. Hence, We need to develop exercise remedy, which can be done without using any exercise equipments and regardless places. The exercise prescription for those for LBP was to do the upper body exercise remedy twice in the morning and another twice in the afternoon and the spinal exercise remedy and the lower body exercise remedy once in the morning and once in the afternoon. We measured their maximum muscular strength every second week using a fitness machine so that we could compare the differences of the muscular strength of the test group and the comparison group. Therefore this research presented the fact that the exercise remedy is effective to prevent and cure LBP through a scientific test. And it confirmed that the exercise remedy by the Ergonomic exercise prescriptions is effective on LBP.

Improving the Dyeability of Gelatin Pretreated Cotton Fabrics Dyeing with Cochineal in Ethanol-Water Mixture (젤라틴 전처리 면직물의 에탄올-물 혼합용매에 의한 코치닐 염색성 향상)

  • Ha, Su Young;Jang, Jeong Dae
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.127-134
    • /
    • 2019
  • Cotton fabrics were treated with gelatin to improved their dyeability, color strength toward cochineal dye. Gelatin were used as the protein. Gelatin is containing a large number of hydrophilic groups. Pad-dry-cure method was used for the treatment process(10g/L concentration). The scanning electron micrograph showed the gelatin was deposited on the surface of cotton. Pretreated fabrics were mordanted with 10%(owf) alum. Then the fabrics were dyed with cochineal. Compared with original cotton fabric the K/S value with cochineal dyes was significantly improved on gelatin modified cotton. Treating cotton with 10g/L concentration gelatin offered higher cochineal adsorption. The dyeability of pH 4 yielded the highest color strength. In dyebaths of a ratio of ethanol and water such as; 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, 0:10, fabrics were dyed. The ratio of ethanol and water had powerful effects on solution polarity. Cochineal dye uptake showed maximum value, when the proportion of ethanol and water was 9:1. Dyeing at increased temperatures and with increased time resulted in higher dye uptake and reddish-purple color(5RP). The washing fastness was 1-2grade, and the fastness to light was 2-3grade.

Study on the Characteristic of Elastomer Composite Containing Tungsten Powder

  • Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.6-11
    • /
    • 2021
  • In order to develop an ultra-high-density elastomeric material for substitution of steel dynamic dampers, a new curing system and technique for high-loading of the filler were examined in this study. Mechanochemical modification of chloroprene rubber (MAH-g-CR) using an internal mixer was carried out with maleic anhydride (MAH) as a reactive monomer. The optimum amount of MAH was 10 phr and the efficient grafting of MAH on CR could be achieved at a mixing temperature of 100℃. After preparing MAH-g-CR, 50 mol% epoxidized natural rubber (ENR 50) was blended with MAH-g-CR to develop a "self-curable rubber blend system" via reaction between the functional groups of the elastomeric matrices without the curing agent and additives. The content of ENR 50 was fixed at 30 wt.% throughout evaluation of the curing behavior of the MAH-g-CR/ENR blend. Tungsten powder was added to the MAH-g-CR/ENR matrix up to 60 vol.% to obtain ultra-high-density, and the maximum density obtained was 7.57 g/㎤. Stable ts2 (scorch time) and t90 (90% cure time) could be obtained even when tungsten powder was incorporated up to 60 vol.%. In addition, the tensile strength and damping properties of MAH-g-CR/ENR containing 60 vol.% of tungsten were better than those of CR containing 60 vol.% of tungsten.