• Title/Summary/Keyword: Maximum Cure

Search Result 93, Processing Time 0.027 seconds

Effects of Vulcanization Type end Temperature on Physical Properties of Natural Rubber Compounds (가황형태 및 온도가 천연고무 컴파운드의 물리적 특성에 미치는 영향)

  • Rhee, John-M.;Yoon, Chan-Ho;Huh, Yang-Il;Han, Seung-Cheol;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 2000
  • Cure characteristics. tensile properties, and dynamic properties were investigated on the carbon black-filled natural rubber compounds, in which three typical vulcanization types conventional vulcanization(Conv), semi-efficient(Semi-EV), and efficient(EV) vulcanizations were used. The effects of vulcanization temperature on both the mechanical property and aging resistance of rubber compounds were also investigated. The Conv cure system showed a slightly slower rate of vulcanization than those of Semi-EV and EV ones. On the other hand, it showed a higher value in the maximum torque of cure curve. Higher tensile moduli were observed in Conv system than those in Semi-EV and EV ones, while lower elongation at break were obtained in Conv one. The tensile strength at break were found to be about the same for three cute systems. Hardness, modulus, and tensile strength decreased with increasing the vulcanization temperature, and the degree of changes in the properties was found to be smaller for EV and Semi-EV systems than that in Conv one. The EV system was found to be superior in thermal-aging resistance to Conv one.

  • PDF

Cure Kinetics of Diglycidyl ether of bisphenol A-Methylene dianiline-Succlnonitrile System (Diglycidyl ether of bisphenol A/Methylene dianiline/Succinonitrile계의 경화반응 속도론)

  • Jo, Seong-U;Sim, Mi-Ja;Kim, Sang-Ok
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.257-262
    • /
    • 1992
  • The cure kinetics of a diglycidyl ether of bisphenol A (DGEBA) with 4, 4'-methylene dianiline (MDA) added succinonitrile was studied through the dynamic run method by applying the data to the Kissinger equation which analyses the effect of the heating rate on the temperature at maximum reaction rate using Differential Scanning Calorimetry (DSC) analyzer in the range of 3$0^{\circ}C$-35$0^{\circ}C$. In the DGEBA/MDA system with SN, the activation energy ($E_a$) and the pre-exponential factor (A) were calculated. From these results, the rate constants (k) were obtained according to the different SN contents.

  • PDF

Preparation and Characterization of Modified Natural Rubber Applied to Seismic Isolation Damper Rubber

  • Seong-Guk Bae;Woong Kim;Yu mi Yun;Jin Hyok Lee;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.128-135
    • /
    • 2023
  • To improve the adhesive strength of natural rubber (NR) for a seismic isolation damper, citraconic acid-g-NR (CCA-g-NR) was synthesized via the melt grafting of citraconic acid (CCA) onto NR using an azobisisnomerobutyronitrile (AIBN) initiator. Subsequently, the influence of CCA and AIBN concentrations on the graft ratio G/R (%) and graft efficiency G/E (%) of the CCA-g-NR was investigated. The optimum CCA and AIBN concentrations required to achieve the desired G/R (3.49%) and G/E (49.8%) were found to be 7 phr and 0.13 phr, respectively. Additionally, we studied the influence of CCA-g-NR concentration on the mechanical properties (tensile strength, elongation at break, and modulus at 300%), adhesive strength, and cure characteristics of the rubber compound in the seismic isolation damper. As the concentration of CCA-g-NR increased, the elongation at break and adhesive strength of the compound increased, whereas its tensile strength and modulus at 300% decreased. Moreover, as the concentration increased, the maximum torque decreased and the scorch time was delayed to obtain an optimal vulcanization time.

Chemo-mechanical Analsis of Bifunctional Linear DGEBA/Linear Amine Resin Casting Systems (DGEBA/선형 아민경화제의 주쇄에 포함된 질소 및 탄소원자 개수에 따른 물성 변화 연구)

  • 명인호;정인재;이재락
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.201-210
    • /
    • 2000
  • To determine the effect of chain length of linear amine curing agents on the thermal and mechanical properties, standard epoxy resin, diglycidyl ether of bisphenol A (DGEBA) was cured with diethylenetriamine (DETA), triethylenetetraamine (TETA) and tetraethylenepentaamine (TEPA) in a stoichiometrically equivalent ratio. From this work, the effect of linear amine curing agents on the thermal and mechanical properties was significantly influenced by chain length of curing agents. In contrast, the results showed that the DGEBA/DETA system had higher values than the DGEBA/TETA and DGEBA/TEPA system in the density, shrinkage (%), thermal expansion coefficient, tensile modulus, and flexural strength. Whereas the DGEBA/DETA cure system had lower values than the DGEBA/TETA and DGEBA/TEPA cure system in the maximum exothermic temperature, conversion (%), and T$_{g}$. These findings imply that the differences in the maximum conversion about the chain length of curing agents affect the thermal and mechanical properties.s.

  • PDF

The Marshall-Olkin generalized gamma distribution

  • Barriga, Gladys D.C.;Cordeiro, Gauss M.;Dey, Dipak K.;Cancho, Vicente G.;Louzada, Francisco;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.245-261
    • /
    • 2018
  • Attempts have been made to define new classes of distributions that provide more flexibility for modelling skewed data in practice. In this work we define a new extension of the generalized gamma distribution (Stacy, The Annals of Mathematical Statistics, 33, 1187-1192, 1962) for Marshall-Olkin generalized gamma (MOGG) distribution, based on the generator pioneered by Marshall and Olkin (Biometrika, 84, 641-652, 1997). This new lifetime model is very flexible including twenty one special models. The main advantage of the new family relies on the fact that practitioners will have a quite flexible distribution to fit real data from several fields, such as engineering, hydrology and survival analysis. Further, we also define a MOGG mixture model, a modification of the MOGG distribution for analyzing lifetime data in presence of cure fraction. This proposed model can be seen as a model of competing causes, where the parameter associated with the Marshall-Olkin distribution controls the activation mechanism of the latent risks (Cooner et al., Statistical Methods in Medical Research, 15, 307-324, 2006). The asymptotic properties of the maximum likelihood estimation approach of the parameters of the model are evaluated by means of simulation studies. The proposed distribution is fitted to two real data sets, one arising from measuring the strength of fibers and the other on melanoma data.

Thermal Properties and Fracture Toughness of Bisphenol-Based DGEBA/DGEBS Epoxy Blend System (Bisphenol계 DGEBA/DGEBS 에폭시 블렌드 시스템의 열적 특성 및 파괴인성)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • In this study, the bisphenol-based DGEBA/GEBS blend systems were studied in cure kinetics, thermal stabilities, and fracture toughness of the casting specimen. The content of DGEBA/DCEBS was varied in 100 : 0, 90 : 10, 80 : 20, 70 : 30, and 60 : 40 wt%. The cure activation energies ($E_a$) of the blend systems were determined by Ozawa's equation. The thermal stabilities, including initial decomposed temperature (IDT), temperatures of maximum rate of degradation ($T_{max}$), and integral procedural decomposition temperature (IPDT) of the cured specimen were investigated by thermogravimetric analysis (TGA). For the mechanical interfacial properties of the specimens, the critical stress intensity factor ($K_{IC}$) test was performed and their fractured surfaces were examined by using a scanning electron microscope (SEM). As a result, $E_a$, IPDT, and $K_{IC}$ show maximum values in the 20 wt% DGEBS content compared with the neat DGEBA resins. This was probably due to the fact that the elevated networks were farmed by the introduction of sulfonyl groups of the DCEBS resin.

A Study on the Physical Properties of Silk Fabrics Treated with Polymethylhydrosiloxane and Polydimethylsiloxane (폴리메틸 히드로 실록산과 폴리디메틸 실록산으로 처리한 견섬유의 물성에 관한 연구)

  • 장병호;신광호;이병학
    • Textile Coloration and Finishing
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The polymethylhydrosiloxane(PMHS) was synthesized by the co-hydrolysis of methyldichlorophydrosilane and ethyl ether, also polydimethylsiloxane(PDMS) was synthesized by the hydrolysis of dimethyl dichlorosilane and ethyl ether. The silk fabrics were treated with PMHS and PDMS in order to improve the water repellency and the wrinkle recovery. Also the effect of PMHS concentration, PDMS concentration and cure temperature on the physical properties of silk fabrics were studied. The maximum water repellency and maximum wrinkle recovery were obtained from the fabrics treated under the conditions 5%-PMHS and PDMS at 16$0^{\circ}C$, and 3%-PMHD and PDMS at 16$0^{\circ}C$, respectively. The tensile strength, the breaking elongation, the reflection and the bending properties of silk fabrics were not degraded severely by the treatment of PMHS or PDMS.

  • PDF

Effects of Formaldehyde to Urea Mole Ratio on Thermomechanical Curing of Urea-Formaldehyde Resin Adhesives

  • Park, Byung-Dae;Kim, Jae-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • This study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermomechanical curing of UF resin adhesives with different F/U mole ratios. Thermomechanical curing of these UF resin adhesives was characterized using parameters of dynamic mechanical analysis (DMA) such as the gel temperature, maximum storage modulus, and peak temperatures of storage and loss modulus. As the F/U mole ratio decreased, the gel temperature of UF resin adhesives increased. The maximum storage modulus as an indicator of the rigidity of UF resin adhesives decreased with decreasing F/U mole ratio. The peak temperature of tan $\delta$ increased with decreasing F/U mole ratio, indicating that the vitrification occurred faster for high F/U mole ratio of UF resin adhesives than for the one of lower F/U mole ratio. These results partially explained the reason why UF resin adhesives with lower F/U mole ratio resulted in relatively poor adhesion performance when they were applied.

A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE DEPTH OF CURE AND LIGHT CURING TIME (수종 광중합 복합 레진의 중합 깊이와 광조사 시간에 따른 중합률에 관한 연구)

  • Kim, Kyung-Hyun;Kwon, Oh-Sung;Kim, Hyun-Gee;Baek, Kyu-Chul;Um, Chung-Moon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.35-60
    • /
    • 1997
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc, depend on the degree of conversion of the resin components. The clinical behavior of restorative resins varies brand to brand. Part of this variation is associated with the filler and differences in the polymer matrix. The polymer matrix of resins may differ because the involved monomers are dissimilar and because of variation in the catalyst system. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the depth of cure and light curing time. 7mm diameter cylindrical aluminum molds were filled with each of five different hybrid light curing composite resins(Z-100, Charisma, Herculite XRV, Prisma TPH, Veridonfil) on the thin resin films. The molds were 1mm, 2mm, 3mm, 4mm, and 5mm in depth to produce resin films of various heights. Each sample was given 20sec, 40sec, and 60sec illumination with a light source. The degree of conversion of carbon double bonds to single bonds in the resin films was examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows; 1. There was difference in the degree of conversion among five light curing composite resins according to the depth of cure for 20sec, 40sec, and 60sec illumination with light source with statistical significance(P<0.05). 2. Five light curing composite resins show lower degree of conversion at surface of the resin than depth of 1mm. 3. The degree of conversion of five light curing composite resins was siginificantly reduced from the maximum for the resin film when the light passed through as little as 1mm of each composite. 4. The degree of conversion of five light curing composite resins decrease significantly at the depth of 4mm, and polymerization was not occured at the depth of 5mm except for Prisma TPH. 5. The degree of conversion of five light curing composite resins was increased with increased light curing time, and there was no significant differences in the degree of conversion above 4mm in Z-100, 3mm in Charisma, and at depth of 5mm in Herculite XRV and Veridonfil(P>0.05).

  • PDF

Improvement in Adhesion Properties of Epoxy/Polyamide/MPD Reactive Blends by means of AP Plasma Treatment and Morphological Tuning (상압 플라즈마 표면처리와 형태학적 조절에 의한 에폭시/폴리아미드/MPD 반응성 블렌드의 접착력 향상)

  • Song, Hyun-Woo;Kang, Hak-Su;Kim, Won-Ho;Marzi, Stephan;Kim, Byung-Min;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.284-289
    • /
    • 2009
  • The morphology and mechanical properties of epoxy/polyamide/MPD reactive blends with various amount of polyamide were investigated. The cure behaviors, mechanical strengths, and morphological changes of the epoxy blend systems were analyzed by using DSC, UTM, and SEM, respectively. The amount of high soluble polyamide in epoxy ranged from 0 to 30 phr, and the cure reaction occurred at $170^{\circ}$ for 30 min. The start and maximum exothermic temperature in heat flows during cure reactions appeared at almost same temperature, indicating that soluble polyamide could rarely hinder the cure reactions. From the SEM images, it was found that the size of separated-phase was very fine about 100-300 nm, and at 20 phr of polyamide the boundary of separated-phase was unclear and the phase revealed co-continuous. By AP plasma treatment of specimen surface, the adhesion strength was increased by 20% due to enhanced surface free energy. By blending 20 phr of polyamide with epoxy, the adhesion strength was increased by 50% due to co-continuous phase in morphology. By considering the surface treatment of specimen and morphological tuning of the blends, it can be expected that the improvement in toughness and excellent adhesion strength can be achieved in structural adhesive systems.