• Title/Summary/Keyword: Maximum Combustion Pressure

Search Result 257, Processing Time 0.026 seconds

Combustion Characteristics of Fish Oil in a Constant Volume Combustion Bomb (정용연소기에 있어서 어유의 연소특성)

  • 서정주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.184-190
    • /
    • 1992
  • The combustion characteristics, ignition delay, p-t, dp/dt, Q-t of diesel oil and fish oil blended diesel oils was investigated according to pressure and temperature in a constant volume combustion bomb. The results are as follows: 1) The influence of temperature and pressure on the ignition delay was almost constant in high temperature, regardless of the blending rates, and the ignition delay was shortest in the 60% blend. 2) The maximum pressure was high in order of with pure diesel oil, with the 20% blend and the 60% blend. 3) The rate of pressure rise was high in order of with pure diesel oil, with the 20% blend and the 60% blend. The rate of maximum pressure rise was significantly higher with pure diesel oil than with two blends. 4) The amount of accumulative heat release was large in order of with pure diesel oil, with the 20% blend and the 60% blend.

  • PDF

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge (정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기)

  • 최승환;전충환;장연준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

COMBUSTION AND EMISSION CHARACTERISTICS OF A TURBOCHARGED DIESEL ENGINE FUELLED WITH DIMETHYL ETHER

  • Wu, J.;Huang, Z.;Qiao, X.;Lu, J.;Zhang, L.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.645-652
    • /
    • 2006
  • This paper is concerned with an experimental study of a turbocharged diesel engine operating on dimethyl ether(DME). The combustion and emission characteristics of DME engine were investigated. The results showed that the maximum torque and power with DME could achieve a greater level compared to diesel operation, particularly at low speeds; the brake specific fuel consumption with DME was lower than the diesel at low and middle engine speeds. The injection delay of DME was longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of DME engine were lower than those of diesel. The combustion velocity of DME was faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, $NO_x$ emissions of the DME engine were reduced by 41.6% on ESC data. The DME engine was smoke free at all operating points of the engine.

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(2) : Inhomogeneous Charge (정적연소기에서의 메탄-공기 혼합기의 연소특성(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.29-36
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of inhomogeneous charge methane-air mixture under several parameters. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to beneath 0.05m/s gradually at 3 seconds. Second mixture is accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the burn rate.

Combustion Characteristics Analysis of Methane-Air Homogeneous Mixture in a Constant Volume Combustion Chamber (정적연소기에서의 메탄-공기 균질혼합기의 연소특성 분석)

  • Lee, Suk-Young;Kim, Sang-Jin;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.9-16
    • /
    • 2008
  • In this study, a cylindrical constant volume combustion chamber is used to investigate the flow and combustion characteristics of methane-air homogeneous mixture under various initial charge pressure, excess air ratios and ignition times. The flame and burning speed, mean gas speed are calculated by numerical analysis to analyze the combustion characteristics. It is found that the mean gas velocity during combustion has the maximum value around 300 ms and then decreased gradually on the condition of 10000 ms, and that the combustion duration is shorten and flame speed and burning velocity have the highest value under the conditions of an excess air ratio 1.1, an initial charge pressure of 0.2 MPa and an ignition time of 300 ms in the present study. And, the initial pressure and burning speed are in inverse proportion, so that it is in agreement with Strehlow who presented that the initial pressure and burning speed are in inverse proportion when the burning speed is under 50cm/s.

  • PDF

Propagation Speed Characteristics of Premixed Methane-Air Flame in a Combustion Chamber with Model of Engine Cylinder (엔진실린더 모형 연소실내의 메탄-공기 예혼합기의 화염전파속도 특성)

  • 전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 1998
  • Flame propagation speed characteristics of methante-air mixtures were experimentally investigated in combustion chamber modelled engine. Flame propagation process was known as a funtion of equivalence ratio initial pressure and initial temperature. Ion probe and schlieren photograph were applied to measure the local flame speed and flame radius in quiescent mixtures. Pressure was also measured to make sure of the reproducibility and to apply combustion analysis. Burning velocity was calculated from the flame propagation speed and combustion analysis. Flames were developed faster with higher initial pressure and initial temperature but showed maximum propagation speed at equivalence ratio 1.1 regardless of initial pressure and temperature. Local flame speed was maximum values at near midpoint between center and wall.

  • PDF

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber( I ) (부실식 정적연소실내 층상혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The results indicated that even the vety lean mixture, which is normally not flammable in single chamber type, could be burned within. a comparatively short time by using sub-chamber with stratified charge method. And the lean inflammability limit of mixture in a main chamber was about ($\phi_m$cr=O.46, when the equivalence ratio of a sub-chamber was $\phi_s$= 1.0. Initial time of pressure increase and total burning times were decreased and maximum combustion pressure. was increased as the equivalence ratio of both sub and main chamber approached unity. Specifically, initial time of pressure increase and total burning times were greatly affected rather by. the equivalence ratio of sub-chamber than that of main chamber. The maximum combustion pressure was little affected if the total equivalence ratio lies in the same range.

  • PDF

Fundamental study on combustion characteristics of methanol fuel in a constant volume chamber (정적연소기를 사용한 메탄올의 연소특성에 관한 연구)

  • 이태원;이중순;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.389-396
    • /
    • 1994
  • It is very important to clarify the ignition and flame propagation processes of methanol fuel in the Spark-ignition engine. High speed Schlieren photography and pressure trace analyses were used to study on combustion characteristics of methanol fuel in a constant volume chamber. Methanol-air mixtures equivalence rations from lean limit to 1.4 were ignited at initial pressure (0.1, 0.3, 0.5 MPa), temperature (313 343, 373 K) and ignition energy (40, 180 mJ). As the result of this study, we verified the characteristics such as ignition delay, effective thermal efficiency, flame propagation velocity, lean limit, ignitability and combustion duration. Obatained results are as follows. (1) The time to 10% reach of maximum pressure was 40-50% of the total combustion duration for this experimental condition hardly affected by equivalence ratio. (2) The Effective thermal efficiency, as calculated from maximum pressure was the highest when the mixture was slightly lean $({\phi} 0.8-0.9)$ and maximum pressure was the highest when the mixiture was slightly rich $({\phi} 1.2-1.2).$

A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel (메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구)

  • Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.