• Title/Summary/Keyword: Max throughput

Search Result 76, Processing Time 0.026 seconds

Vertical Handover between LTE and Wireless LAN Systems based on Common Radio Resource Management (CRRM) and Generic Link Layer (GLL) (LTE/WLAN 이종망 환경에서 범용링크계층과 통합무선자 원관리 기법이 적용된 VHO 방안 연구)

  • Kim, Tae-Sub;Oh, Ryong;Lee, Sang-Joon;Yoon, Suk-Ho;Ryu, Seung-Wan;Cho, Choong-Ho
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.35-48
    • /
    • 2010
  • For the next generation mobile communication system, diverse wireless network techniques such as beyond 3G LTE, WiMAX/WiBro, and next generation WLAN etc. are proceeding to the form integrated into the All-IP core network. According to this development, Beyond 3G integrated into heterogeneous wireless access technologies must support the vertical handover and network to be used of several radio networks. However, unified management of each network is demanded since it is individually serviced. Therefore, in order to solve this problem this study is introducing the theory of Common Radio Resource Management (CRRM) based on Generic Link Layer (GLL). This study designs the structure and functions to support the vertical handover and propose the vertical handover algorithm of which policy-based and MCDM are composed between LTE and WLAN systems using GLL and CRRM. Finally, simulation results are presented to show the improved performance over the data throughput, handover success rate and the system service cost.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

Low Area and High Performance Multi-mode 1D Transform Block Design for HEVC (HEVC를 위한 저면적 고성능 다중 모드 1D 변환 블록 설계)

  • Kim, Ki-Hyun;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • This paper suggest an effective idea to implement an low area multi-mode one dimension transform block of HEVC(High Efficiency Video Coding). The time consuming multiplier path is designed to operate on low frequency. Normal multipliers dealing with variable operands are replaced with smaller constant multipliers which do the product with constant coefficient and variable only using shifters and adders. This scheme increases total multiplier counts but entire areas are reduced owing to smaller area of constant multiplier. Idle cycles caused by doubled multipliers enable to use multi-cycle paths on the cycle eating multiplier data path. Operating frequency is lowered by multi-cycle path but total throughput is maintained. This structure is implemented with TSMC 0.18 CMOS process library, and operated on 186MHz frequency to process a 4k($3840{\times}2160$) image. Max operating frequency is 300MHz.

Performance Evaluation of Turbo Codes by Soft Detection Metrics of STBC over an IEEE 802.16e Link (IEEE 802.16e 링크에서 시공간 블록 부호의 연판정 검출에 따른 터보 부호의 성능평가)

  • Kim, Young-Min;Kim, Soo-Young;Lim, Kwang-Jae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • Multi antenna techniques using space-time codes can achieve diversity gains in a multi-path environment without additional bandwidth requirement. Most of the 4G candidate standards including the IEEE 802.16e adopt multi-input multi-output (MIMO) schemes to achieve either high throughput performance or diversity gains. In these 4G candidate standards, turbo codes using an iterative decoder with soft input soft output are used to overcome serious channel fading. For this reason, the estimated signal values from MIMO detectors should be soft decision detection values. In this paper, we propose efficient methods to estimate soft decision detection values for various space time coding schemes, and provide the simulation results of turbo coded space time coding scheme over an IEEE 802.16e link.

An ABR Rate Control Scheme Considering Wireless Channel Characteristics in the Wireless ATM Network (무선 ATM망에서 무선채널의 특성을 고려한 ABR 전송률 제어 방안)

  • Yi, Kyung-Joo;Min, Koo;Choi, Myung-Whan
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.2
    • /
    • pp.206-218
    • /
    • 2000
  • Retransmissions on the DLC layer are essential to ABR service providing the low CLR (cell loss ratio) over the unreliable wireless channel with high bit error rate. In the wireless ATM, the DLC layer below ATM layer performs the retransmission and reordering of the cells to recover the cell loss over the wireless channel and by doing so, the effect of the wireless channel characteristics with high bit error rate can be minimized on the ATM layer which is designed under the assumption of the low bit error rate. We propose, in this paper, the schemes to reflect the changes of the transmission rate over the wireless channel on the ABR rate control. Proposed scheme can control the source rate to the changes of the transmission rate over the wireless channel and reduce the required buffer size in the AP (access point). In the simulation, we assume that the DLC layer can inform the ATM layer of the wireless channel quality as good or bad. Our simulation results show that the proposed schemes require the smaller buffer size compared with the existing scheme, enhanced dynamic max rate control algorithm (EDMRCA). It is also shown that the scheme with the intelligent DLC which adjusts the rate to the wireless channel quality not only provides the low CLR with smaller buffer requirement but also improves the throughput by utilizing the wireless bandwidth more efficiently.

  • PDF

Simultaneous estimation of fatty acids contents from soybean seeds using fourier transform infrared spectroscopy and gas chromatography by multivariate analysis (적외선 분광스펙트럼 및 기체크로마토그라피 분석 데이터의 다변량 통계분석을 이용한 대두 종자 지방산 함량예측)

  • Ahn, Myung Suk;Ji, Eun Yee;Song, Seung Yeob;Ahn, Joon Woo;Jeong, Won Joong;Min, Sung Ran;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • The aim of this study was to investigate whether fourier transform infrared (FT-IR) spectroscopy can be applied to simultaneous determination of fatty acids contents in different soybean cultivars. Total 153 lines of soybean (Glycine max Merrill) were examined by FT-IR spectroscopy. Quantification of fatty acids from the soybean lines was confirmed by quantitative gas chromatography (GC) analysis. The quantitative spectral variation among different soybean lines was observed in the amide bond region ($1,700{\sim}1,500cm^{-1}$), phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) and sugar region ($1,200{\sim}1,000cm^{-1}$) of FT-IR spectra. The quantitative prediction modeling of 5 individual fatty acids contents (palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid) from soybean lines were established using partial least square regression algorithm from FT-IR spectra. In cross validation, there were high correlations ($R^2{\geq}0.97$) between predicted content of 5 individual fatty acids by PLS regression modeling from FT-IR spectra and measured content by GC. In external validation, palmitic acid ($R^2=0.8002$), oleic acid ($R^2=0.8909$) and linoleic acid ($R^2=0.815$) were predicted with good accuracy, while prediction for stearic acid ($R^2=0.4598$), linolenic acid ($R^2=0.6868$) had relatively lower accuracy. These results clearly show that FT-IR spectra combined with multivariate analysis can be used to accurately predict fatty acids contents in soybean lines. Therefore, we suggest that the PLS prediction system for fatty acid contents using FT-IR analysis could be applied as a rapid and high throughput screening tool for the breeding for modified Fatty acid composition in soybean and contribute to accelerating the conventional breeding.