• Title/Summary/Keyword: Matrix structures

Search Result 1,284, Processing Time 0.024 seconds

A Study on the Evaluation of Fiber and Matrix Failures for Laminated Composites using Hashin·Puck Failure Criteria (Hashin·Puck 파손기준 기반 적층 복합재료의 섬유 및 기지파손 평가에 관한 연구)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.143-152
    • /
    • 2015
  • In the present study, the fiber and matrix failure of composite laminates under arbitrary biaxial stresses were evaluated based on separate mode criteria such as Hasnin and Puck theories. There is a limitation to predict the fiber-dominant and/or matrix-dominant failures under arbitrary stress states using limit criteria (maximum stress and maximum strain theories) and interactive criteria (Tsai-Hill and Tsai-Wu theories). There is little literature for failure analysis of ships and offshore composite structures considering advanced failure theories such as Hashin and Puck theories. Furthermore, there is not enough practical commercial finite element analysis (FEA) code which is basically adopted the separate mode criteria. Hence, in the present study, the user-defined subroutine of commercial FEA code ABAQUS for evaluation of fiber and matrix failures of composite structures was developed based on Hashin and Puck failure criteria. And then, the proposed subroutine was validated by comparing with a series of experimental results of carbon- and glass-implemented composite laminates to guarantee the reliability and usefulness of the developed method.

A Study on the Dynamic Post-Buckling Behavior of the Plane Frame Structures Subjected to Circulatory Forces (Circulatory Force를 받는 평면(平面)뼈대 구조물(構造物)의 동적(動的) 후좌굴(後座屈) 거동(擧動)에 관한 연구(硏究))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 1988
  • A geometrically nonlinear analysis procedure for plane frame structures in order to study the static and dynamic post-buckling behavior of these structures subjected to circulatory forces is presented. The elastic and geometric stiffness matrices, the mass matrix and load correction stiffness matrix are derived from the extended virtual work principle, where the tangent stiffness matrix becomes non-symmetric due to the effects of non-conservative circulatory forces. The dynamic analysis of plane frame structures subjected to circulatory forces in pre- and post-buckling ranges is carried out by integrating the equations of motion directly by the numerically stable Newmark method. Numerical results are presented in order to demonstrate the vality and accuracy of the proposed procedure.

  • PDF

As-Cast and Solidification Structures of Fe-3%C-x%Cr-y%V-w%Mo-z%W Multi- Component White Cast Irons (Fe-3%C-x%Cr-y%V-w%Mo-z%W 다합금계백주철의 주방상태 및 급냉조직)

  • Yu, sung-Kon;Shin, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.414-422
    • /
    • 2002
  • Three different multi-component white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their as-cast and solidification structures. Three combinations of the alloying elements were selected so as to obtain the different types of carbides and matrix structures : 3%C-10%Cr-5%Mo-5%W(alloy No.1), 3%C-10%V-5% Mo-5%W(alloy No. 2) and 3%C-17%Cr-3% V(alloy No.3). The as-cast microstructures were investigated with optical and scanning electron microscopes. There existed two different types of carbides, $M_7C_3$ carbide with rod-like morphology and $M_6C$ carbide with fishbone-like one, and matrix in the alloy No. 1. The alloy No. 2 consisted of MC carbide with chunky and flaky type and needle-like $M_2C$ carbide, and matrix. The chunky type referred to primary MC carbide and the flaky one to eutectic MC carbide. The morphology of the alloy No. 3 represented a typical hypo-eutectic high chromium white cast iron composed of rod-like $M_7C_3$ carbide which is very sensitive to heat flow direction and matrix. To clarify the solidification sequence, each iron(50g) was remelted at 1723K in an alumina crucible using a silicon carbide resistance furnace under argon atmosphere. The molten iron was cooled at the rate of 10K/min and quenched into water at several temperatures during thermal analysis. The solidification structures of the specimen were found to consist of austenite dendrite(${\gamma}$), $ ({\gamma}+ M_7C_3)$ eutectic and $({\gamma}+ M_6C)$ eutectic in the alloy No. 1, proeutectic MC, austenite dendrite(${\gamma}$), (${\gamma}$+MC) eutectic and $({\gamma}+ M_2C)$ eutectic in the alloy No. 2, and proeutectic $M_7C_3$ and $ ({\gamma}+ M_7C_3)$ eutectic in the alloy No 3. respectively.

The Effect of Destabilization Heat Treatment on the Carbide and Matrix Microstructures of 3%C-18%Cr-1%Mo-2%Ni-1%Mn High Chromium Cast Iron (3%C-18%Cr-1%Mo-2%Ni-1%Mn 고크롬백주철의 탄화물 및 기지조직에 미치는 불안정화열처리의 영향)

  • Yu, Sung-Kon
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.581-586
    • /
    • 2003
  • 3%C-18%Cr-1%Mo-2%Ni-1%Mn high chromium cast iron was casted and destabilized at temperatures of 900, 1000 and $1100^{\circ}C$ for 1, 2, 4 and 8hr under $N_2$atmosphere to observe the effect of destabilization temperature and time on the carbide and matrix structures. In as-cast condition, the microstructure consisted of $M_{ 7}$$C_3$ carbides and matrix structures which were composed of 91.50% austenite and 8.50% martensite. Numerous fine secondary carbides were observed in the specimens destabilized at $900^{\circ}C$ for 1, 2, 4 and 8hr. But, the number of secondary carbides were much reduced with the increased destabilization temperature. More austenite was formed in the matrix with the higher destabilization temperature. The amounts of austenite in the matrix were 4.23% at $900^{\circ}C$, 29.68% at $1000^{\circ}C$ and 66.51% at$ 1100^{\circ}C$, respectively. However, the effect of destabilization time on the secondary carbide and matrix was very weak compared with that of destabilization temperature. The ranges of the amount of austenite in the matrix from 1hr to 8hr destabilization heat treatment were: 3.95%-4.35% at $900^{\circ}C$, 28.89%-30.15% at $1000^{\circ}C$ and 65.13%-67.12% at $1100^{\circ}C$, respectively. The variation ranges were very narrow. The equilibrium concentration of C and Cr in austenite was already reached within 1hr during destabilization heat treatment. After an attainment of the equilibrium concentration of C and Cr in austenite, no more secondary carbide was precipitated from the matrix.

Efficient LDPC coding using a hybrid H-matrix

  • Kim Tae Jin;Lee Chan Ho;Yeo Soon Il;Roh Tae Moon
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.473-476
    • /
    • 2004
  • Low-Density Parity-Check (LDPC) codes are recently emerged due to its excellent performance to use. However, the parity check matrices (H) of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix for partially parallel decoder structures, which is efficient in hardware implementation of both decoders and encoders. Using proposed methods, the encoding design can become practical while keeping the hardware complexity of partially parallel decoder structures.

  • PDF

Displacement and force control of complex element structures by Matrix Condensation

  • Saeed, Najmadeen M.;Kwan, Alan S.K.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.973-992
    • /
    • 2016
  • A direct and relatively simple method for controlling nodal displacements and/or internal bar forces has been developed for prestressable structural assemblies including complex elements ("macro-elements", e.g., the pantographic element), involving Matrix Condensation, in which structural matrices being built up from matrices of elementary elements. The method is aimed at static shape control of geometrically sensitive structures. The paper discusses identification of the most effective bars for actuation, without incurring violation in bar forces, and also with objective of minimal number of actuators or minimum actuation. The advantages of the method is that the changes for both force and displacement regimes are within a single formulation. The method can also be used for adjustment of bar forces to either reduce instances of high forces or increase low forces (e.g., in a cable nearing slack).

Improved Multi-band Transfer Matrix Method for Calculating Eigenvalues and Eigenfunctions of Quantum Well and Superlattice Structures

  • Kim, Byoung-Whi;Jun, Yong-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.20 no.4
    • /
    • pp.361-379
    • /
    • 1998
  • We present an improved transfer matrix algorithm which can be used in solving general n-band effective-mass $Schr{\ddot{o}}dinger$ equation for quantum well structures with arbitrary shaped potential profiles(where n specifies the number of bands explicitly included in the effective-mass equation). In the proposed algorithm, specific formulas are presented for the three-band (the conduction band and the two heavy- and light-hole bands) and two-band (the heavy- and light-hole bands) effective-mass eigensystems. Advantages of the present method can be taken in its simple and unified treatment for general $n{\times}n$ matrix envelope-function equations, which requires relatively smaller computation efforts as compared with existing methods of similar kind. As an illustration of application of the method, numerical computations are performed for a single GaAs/AlGaAs quantum well using both the two-band and three-band formulas. The results are compared with those obtained by the conventional variational procedure to assess the validity of the method.

  • PDF

A Study on the Ultimate Strength Analysis of Frame Structures by Idealized Structural Unit Method (이상화 구조요소법에 의한 골조구조물의 최종강도해석에 관한 연구)

  • 백점기;임화규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.28-33
    • /
    • 1990
  • This paper presents an efficient and accurate method for nonlinear analysis of frame structures by idealized structural unit method. The main idea behind the present method is to minimize the cost of the computational effort by reducing the number of unknowns. An explicit form of the tangential elastic stiffness matrix of the element is derived by using updated Lagrangian approach. An ultimate limit state of the element is judged on the basis of the formation of a plastic hinge mechanism. The elasto-plastic stiffness matrix and the post-ultimate stiffness matrix of the element are formulated by plastic node method. A comparison between the present method is very efficient and accurate because the computing time required is very small while giving the accurate solution.

  • PDF

The role of softening in the numerical analysis of R.C. framed structures

  • Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.785-801
    • /
    • 1997
  • Reinforced Concrete beams with tension and compression softening material constitutive laws are studied. Energy-based and non-local regularisation techniques are presented and applied to a R.C. element. The element characteristics (sectional tangent stiffness matrix, element tangent stiffness matrix restoring forces) are directly derived from their symbolic expressions through numerical integration. In this way the same spatial grid allows us to obtain a non-local strain estimate and also to sample the contributions to the element stiffness matrix. Three examples show the spurious behaviors due to the strain localization and the stabilization effects given by the regularisation techniques, both in the case of tension and compression softening. The possibility to overestimate the ultimate load level when the non-local strain measure is applied to a non softening material is shown.

Sensitivity-based finite element model updating with natural frequencies and zero frequencies for damped beam structures

  • Min, Cheon-Hong;Hong, Sup;Park, Soo-Yong;Park, Dong-Cheon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.904-921
    • /
    • 2014
  • The main objective of this paper is to propose a new Finite Element (FE) model updating technique for damped beam structures. The present method consists of a FE model updating, a Degree of Freedom (DOF) reduction method and a damping matrix identification method. In order to accomplish the goal of this study, first, a sensitivity-based FE model updating method using the natural frequencies and the zero frequencies is introduced. Second, an Iterated Improved Reduced System (IIRS) technique is employed to reduce the number of DOF of FE model. Third, a damping matrix is estimated using modal damping ratios identified by a curve-fitting method and modified matrices which are obtained through the model updating and the DOF reduction. The proposed FE model updating method is verified using a real cantilever beam attached damping material on one side. The updated result shows that the proposed method can lead to accurate model updating of damped structures.