Improved Multi-band Transfer Matrix Method for Calculating Eigenvalues and Eigenfunctions of Quantum Well and Superlattice Structures

  • 발행 : 1998.12.15

초록

We present an improved transfer matrix algorithm which can be used in solving general n-band effective-mass $Schr{\ddot{o}}dinger$ equation for quantum well structures with arbitrary shaped potential profiles(where n specifies the number of bands explicitly included in the effective-mass equation). In the proposed algorithm, specific formulas are presented for the three-band (the conduction band and the two heavy- and light-hole bands) and two-band (the heavy- and light-hole bands) effective-mass eigensystems. Advantages of the present method can be taken in its simple and unified treatment for general $n{\times}n$ matrix envelope-function equations, which requires relatively smaller computation efforts as compared with existing methods of similar kind. As an illustration of application of the method, numerical computations are performed for a single GaAs/AlGaAs quantum well using both the two-band and three-band formulas. The results are compared with those obtained by the conventional variational procedure to assess the validity of the method.

키워드

참고문헌

  1. Phys. Rev. B v.19 no.12 Intersubband Scattering Effect on the Mobility of a Si(100) Inversion Layer at Low Temperatures Mori, S.;Ando, T.
  2. J. Phys. Soc. Jpn. v.47 no.5 Electronic Properties of a Semiconductor Superlattices I Ando, T.;Mori, S.
  3. J. Phys. Soc. Jpn. v.48 no.3 Electronic Properties of a Semiconductor Superlattices II Mori, S.;Ando, T.
  4. Phys. Rev. B v.28 no.2 Electronic Structure and Semiconductor-Semimetal Transition in InAs-GaSb Superlattices Altarelli, M.
  5. Phys. Rev. B v.30 no.6 Quantum-Size Effects in the Continuum States of Semiconductor Quantum Wells Bastard, G.
  6. Phys. Rev. B v.32 no.6 Theoretical Study of Subband Levels in Semiconductor Heterostructures Potz, W.;Porod, W.;Ferry, D.K.
  7. IEEE J. Quantum Electronics v.QE-22 no.9 Electronic States in Semiconductor Heterostructures Bastard, G.;Brum, J.A.
  8. IEEE J. Quantum Electronics v.QE-22 no.9 Phonons in Semiconductor Superlattices Klein, M.V.
  9. IEEE J. Quantum Electronics v.QE-22 no.9 A Bird's -Eye View on the Evolution of Semiconductor Superlattices and Quantum Wells Esaki, L.
  10. Phys. Rev. B v.33 no.12 k.p Theory of Semiconductor Superlattice Electronic Structure. I. Formal Results Smith, D.L.;Mailhiot, C.
  11. Phys. Rev. B v.33 no.12 k.p Theory of Semiconductor Superlattice Electronic Structure. II. Application to Gal-xInxAs-Al1-yInyAs [100] Superlattices Mailhiot, C.;Smith, D.L.
  12. Phys. Rev. B v.41 no.8 Shallow Donor Impurities in GaAs-Ga1-xAlxAs Quantum Well Structures: Role of the Dielectric-Constant Mismatch Fraizzoli, S.;Bassani, F.
  13. Phys. Rev. B v.41 no.6 Electronic and Optical Properties of III-V and II-VI Semiconductor Superlattices Johnson, N.F.;Ehrenreich, H.;Hui, P.M.;Young, P.M.
  14. Phys. Rev. B v.42 no.11 Nonlinear Optical Properties of GaAs/$Ga_{1-x}Al_x$ As Superlattices Xie, H.;Fiedman, L.R.;Ram-Mohan, L.R.
  15. Phys. Rev. B v.43 no.2 Electronic Structures of GdAs/GaAs Superlattices Xia, J.B.;Ren, S.F.;Chang, Y.C.
  16. J. Appl. Phys. v.77 no.2 Multiband Coupling Effects on Electron Quantum Well Intersubband Transitions Peng, L.H.;Fonstad, C.G.
  17. Phys. Rev. B v.33 no.4 Schulman, J.N.;Chang, Y.C.
  18. Phys. Rev. B v.24 no.10 Superlattice Band Structure in the Envelope-Function Approximation Bastard, G.
  19. Phys. Rev. B v.25 no.12 Theoretical Investigations of Superlattice Band Structure in the Envelope-Function Approximation Bastard, G.
  20. Phys. Rev. B v.38 no.9 Transfer-Matrix Algorithm for the Calculation of the Band Structure of Semiconductor Superlattices Ram-Mohan, L.R.;Yoo, K.H.;Aggarwal, R.L.
  21. IEEE J. Quantum Electronics v.QE-26 no.11 Solving the Schrodinger Equation in Arbitrary Quantum-Well Potential Profiles Using the Transfer Matrix Method Jonsson, B.;Eng, S.T.
  22. Phys. Rev. B v.43 no.12 Efficient Band-Structure Calculations of Strained Quantum Wells Chuang, S.L.
  23. Phys. Rev. B v.8 Schlosser, H.;Lipari, N.O.
  24. Phys. Rev. B v.28 no.2 Electronic Structure and Semiconductor-Semimetal Transition in InAs-GaSb Superlattices Altarelli, M.
  25. Phys. Rev. B v.31 no.2 Effective Masses of Holes at GaAs-AlGaAs Heterojunctions Broido, D.A.;Sham, L.J.
  26. Phys. Rev. B v.32 no.8 Calculations of Hole Subbands in Semiconductor Quantum Wells and Superlattices Altarelli, M.;Ekenberg, U.;Fasolino, A.
  27. Appl. Phys. Lett. v.49 no.1 Exact Calculations of Quasibound States of an Isolated Quantum Well with Uniform Electric Field: Quantum Well Stark Resonance Ahn, D.;Chuang, S.L.
  28. Phys. Rev. B v.35 no.15 Variational Calculation of Polarization of Quantum-Well Photoluminescence Twardoski, A.;Hermann, C.
  29. Phys. Rev. B v.36 no.11 Hole Subbands in Strained GaAs-$Ga_{1-x}Al_x$ As Quantum Wells: Exact Solution of the Effective-Mass Equation Andreani, L.C.;Pasquarello, A.;Bassani, F.
  30. Am. J. Phys. v.46 no.7 Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations Wetsel, G.C.Jr.
  31. Phys. Rev. B v.36 no.6 New Formalism of the Kronig-Penney Model with Application to Superlattices Cho, H.S.;Prucnal, R.
  32. Phys. Rev. B v.36 no.6 Path-Integral Method for a Heavy Particle Moving in a Periodic Potential and Screened by a Light Degenerate Fermi Gas Zimanyi, G.T.;Vladar, K.;Zawadowski, A.
  33. Phys. Rev. B v.45 no.3 Diagonal Representation for the Transfer-Matrix Method for Obtaining Electronic Energy Levels in Layered Semiconductor Heterostructures Chen, B.;Lazzouni, M.;Ram-Mohan, L.R.
  34. Semiconductors and Semimetals, Vol. 1 Kane, E.O.;Willadson, R.K.(ed.);Beer, A.C.(ed.)
  35. Quantum Physics Gasiorowicz, S.
  36. Key Parameters in Physics: Gallium Asenide, No. 1 Blakemore, J.S.(ed.)
  37. J. Appl. Phys. v.77 no.9 Electronic and Intersubband Optical Properties of p-Type GaAs/AlGaAs Superlattices for Infrared Photodetectors Kim, B.W.;Majerfeld, A.
  38. Phys. Rev. B v.37 no.6 Effective-Mass-Mismatch-Induced Intersubband Absorption Line Broadening in Semiconductor Quantum Wells Ikonic, Z.;Milanovic, V.;Tjapkin, D.;Pajevic, S.
  39. J. Appl. Phys. v.68 no.5 Heavily Doped GaAs: Se. II. Electron Mobility Szmyd, D.M.;Hanna, M.C.;Majerfeld, A.
  40. Phys. Rev. B v.43 no.5 Intersubband Absorption Line Broadening in Semicondutor Quantum Wells: Nonparabolicity Contribution Zaluzny, M.
  41. Quantum Phenomena, Modular Series on Solid State Devices, Volume VIII Datta, S.(ed.)
  42. Phys. Rev. v.102 no.4 Quantum Theory of Cyclotron Resonance in Semiconductors : General Theory Luttinger, J.M.
  43. Numerical Data and Functional Relationships in Science and Technology, Semiconductors. Vol. 22 Madelung, O.(ed.)
  44. Phys. Rev. B v.4 no.10 Valence-Band Parameters in Cubic Semiconductors Lawaetz, P.
  45. Phys. Rev. B v.41 no.17 Eight-Band k.p Model of Strained Zinc-Blende Crystals Bahder, T.B.