• Title/Summary/Keyword: Matrix structures

Search Result 1,284, Processing Time 0.036 seconds

A Study of Cold Room Experiments for Strength Properties of Frozen Soil (Cold Room 실험을 통한 동결토의 강도특성 연구)

  • Seo, Young-Kyo;Kang, Hyo-Sub;Kim, Eun-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2008
  • Recently many countries have become interested in the development of cold or arctic regions. The construction of engineered structures in those regions demands an understanding of the deformation characteristics of frozen soil. However, an understanding of frozen soil behavior poses difficult problems owing to the complex interaction between the soil particles and the ice matrix. In this research, a series of laboratory tests was performed to investigate the variations in the unconfined compression strength and split tensile strength of weathered granite soil and mixed soil (standard sand and kaolinite) in 15 degrees below zero environments. In the frozen soil tests, specimens were prepared with various water and clay contents, and then the interrelationships between four factors (water content, clay content, unconfined compression strength, split tensile strength) were analyzed. The test results were summarized as follows; as the water content was increased, the unconfined compressive and split tensile strengths also increased in frozen soil. However as the clay content was increased, the unconfined compressive and split tensile strengths were lowered. In the case of frozen soil that contained little clay content, the strength decreased rapidly in mixed soil (standard sand and kaolinite) when the frozen specimen was broken. On the other hand, in the cases of mixed soil that contained a high clay content and weathered granite soil, the strength decreased relatively slowly.

Vibration analysis of FG porous rectangular plates reinforced by graphene platelets

  • Zhou, Changlin;Zhang, Zhongxian;Zhang, Ji;Fang, Yuan;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The aim of this study is to investigate free vibration of functionally graded porous nanocomposite rectangular plates where the internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. The GPL-reinforced plate is modeled using a semi-analytic approach composed of generalized differential quadrature method (GDQM) and series solution adopted to solve the equations of motion. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. New results reveal the importance of porosity coefficient, porosity distribution, graphene platelets (GPLs) distribution, geometrical and boundary conditions on vibration behavior of porous nanocomposite plates. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution.

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.

Synthesis of Environmental-Friendly Starch-acrylic Coating Sols by Emulsion Polymerization (유화중합에 의한 친환경 전분-아크릴 코팅졸의 합성)

  • Li, Mei-Chun;Mun, Yoo-Ju;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.272-279
    • /
    • 2010
  • Starch is an environmental-friendly natural source, more interests are attracted to use starch for synthesis of composites and coating sols. Starch-acrylic coating sols for architectural materials were synthesized by emulsion polymerization. The structures of synthesized materials were characterized by using Infrared spectra, $^1H$-NMR spectra, and physical characteristics were investigated by X-ray diffraction, foaming test, whiteness test, gloss test and tensile strength test. XRD results showed that starch in starch-acrylic copolymer matrix was in an amorphous state. Starch-acrylic emulsion was compounded with 1%, 3%, 5% foaming agent (n-pentane) and 60% $CaCO_3$ solution. The results showed that starch and foaming agent could increase the foamability. Tensile strength increased with the enhancement of starch and foaming agent concentration. But whiteness and gloss decreased with increase of starch and foaming agent concentration.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

Effect of Biological and Liquid Hot Water Pretreatments on Ethanol Yield from Mengkuang (Pandanus artocarpus Griff)

  • Yanti, Hikma;Syafii, Wasrin;Wistara, Nyoman J;Febrianto, Fauzi;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.145-162
    • /
    • 2019
  • This study aimed to increase the sugar and ethanol yield from the mengkuang plant biomass through biological and liquid hot water (LHW) pretreatment and their combination. The results showed that biological pretreatments with 5% inoculum of the fungus Trametes versicolor resulted in the highest alpha cellulose content incubated for 30 days, and 10% inoculum resulted in the lowest lignin content. LHW pretreatment decreased the hemicellulose content of pulps from 10.17% to 9.99%. T. versicolor altered the structure of the mengkuang pulp by degrading the lignin and lignocellulose matrix. The resulting delignification and cellulose degradation facilitate the hydrolysis of cellulose into sugars. The alpha cellulose content after biological-LHW pretreatment was higher (78.99%) compared to LHW-biological pretreatment (76.85%). Scanning electron microscopy analysis showed that biological-LHW combinated treatment degrades the cell wall structures. The ethanol yield for biological-LHW pretreated sample was observed 43.86% (13.11 g/L ethanol by weight of the substrate, which is much higher than that of LHW-biological pretreatment (34.02%; 9.097 g/L). The highest reducing sugar content about 45.10% was observed with a resulting ethanol content of 15.5 g/L at LHW pretreatment temperature of $180^{\circ}C$ for 30 min.

Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel

  • Li, Fangjie;Li, Huigai;Huang, Di;Zheng, Shaobo;You, Jinglin
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1394-1402
    • /
    • 2018
  • This study investigates the mechanism of MnS precipitation on $Al_2O_3-SiO_2$ inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized $Al_2O_3-SiO_2$ inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the $Al_2O_3$-rich regions of the $Al_2O_3-SiO_2$ inclusions; this can be explained by the high lattice disregistry between MnS and $Al_2O_3$.

Development of Modeling Technique and Material Prediction Method Considering Structural Characteristics of Woven Composites (직조 복합재료의 구조적 특성을 고려한 모델링 기법 및 물성 예측 기법 개발)

  • Choi, Kyung-Hee;Hwang, Yeon-Taek;Kim, Hee-June;Kim, Hak-Sung
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.206-210
    • /
    • 2019
  • As the use of composite materials of woven structure has expanded to various fields such as automobile and aviation industry, there has been a need for reliability problems and prediction of mechanical properties of woven composites. In this study, finite element analysis for predicting the mechanical properties of composite materials with different weaving structures was conducted to verify similarity with experimental static properties and an effective modeling method was developed. To reflect the characteristics of the weave structure, the meso-scale representative volume element (RVE) was used in modeling. Three-dimensional modeling was carried out by separating the yarn and the pure matrix. Hashin's failure criterion was used to determine whether the element was failed, and the simulation model used a progressive failure model which was suitable for the composite material. Finally, the accordance of the modeling and simulation technique was verified by successfully predicting the mechanical properties of the composite material according to the weave structure.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).