Browse > Article
http://dx.doi.org/10.5658/WOOD.2019.47.2.145

Effect of Biological and Liquid Hot Water Pretreatments on Ethanol Yield from Mengkuang (Pandanus artocarpus Griff)  

Yanti, Hikma (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University)
Syafii, Wasrin (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University)
Wistara, Nyoman J (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University)
Febrianto, Fauzi (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University)
Kim, Nam Hun (Department of Forest Biomaterials Engineering, College of Forest and Environmental Science, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.47, no.2, 2019 , pp. 145-162 More about this Journal
Abstract
This study aimed to increase the sugar and ethanol yield from the mengkuang plant biomass through biological and liquid hot water (LHW) pretreatment and their combination. The results showed that biological pretreatments with 5% inoculum of the fungus Trametes versicolor resulted in the highest alpha cellulose content incubated for 30 days, and 10% inoculum resulted in the lowest lignin content. LHW pretreatment decreased the hemicellulose content of pulps from 10.17% to 9.99%. T. versicolor altered the structure of the mengkuang pulp by degrading the lignin and lignocellulose matrix. The resulting delignification and cellulose degradation facilitate the hydrolysis of cellulose into sugars. The alpha cellulose content after biological-LHW pretreatment was higher (78.99%) compared to LHW-biological pretreatment (76.85%). Scanning electron microscopy analysis showed that biological-LHW combinated treatment degrades the cell wall structures. The ethanol yield for biological-LHW pretreated sample was observed 43.86% (13.11 g/L ethanol by weight of the substrate, which is much higher than that of LHW-biological pretreatment (34.02%; 9.097 g/L). The highest reducing sugar content about 45.10% was observed with a resulting ethanol content of 15.5 g/L at LHW pretreatment temperature of $180^{\circ}C$ for 30 min.
Keywords
biological; liquid hot water; ethanol; mengkuang (Pandanus artocarpus Griff); chemical and morphological changes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wistara, N.J., Pelawi, R., Fatriasari, W. 2016. The Effect of Lignin Content and Freeness of Pulp on the Bioethanol Productivity of Jabon Wood. Waste and Biomass Valorization 7(5): 1141-1146.   DOI
2 Yang, H., Wang, K., Ma, J., Yang, J., Shi, Z. 2017. Liquid hot water pretreatment of wheat straw for full carbohydrates biorefinery. BioResources 12(3): 6342-6352.
3 Yanti, H., Syafii, W., Wistara, N.J., Febrianto, F. 2018. Sifat dasar tanaman mengkuang (Pandanus artocarpus Griff). Jurnal Ilmu dan Teknologi Kayu Tropis. 16(1): 1-14.
4 Yu, H., Zhang, X., Song, L.K.J., Xu, C., Du, W., Zhang, J. 2010. Evaluation of white rot fungi assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulose. Journal of Bioscience and Bioengineering 110(6): 660-664.   DOI
5 Gao, Y., Xu, J., Zhang, Y., Yu, Q., Zhenhong, Y., Liu, Y. 2013. Effect of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Journal Bioresource Technology 144: 396-400.   DOI
6 Giles, R.L, Galloway, E.R., Elliot, G.D. Parrow, M.W. 2011. Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii. Bioresource Technology 102: 8011-8016.   DOI
7 Goshadrou, A., Karimi, K., Taherzadeh, M.J. 2011. Improvement of sweet sorghum bagasse hydrolysis by alkali and acidic pretreatment. Wood Renewable Energy Congress. Bioenergy Technology. Linkoping Sweden 8-13 May. 374-380.
8 Hadisuparto, H., Wardenaar, E., Yusro, F., Yanti, H. 2011. Potensi tumbuhan mengkuang dari hutan rawa gambut Kalimantan Barat Sebagai Bahan Baku Pulp dan Kertas. Jurnal Penelitian Universitas Tanjungpura 22(2): 42-57.
9 Hendriks, A.T.W.M., Zeeman, G. 2009. Pretreatment enhance the digestibility of lignocellulosic biomass: techno-economic performance in short-, middle-, and long-term. Journal of Biomass and Bioenergy 28: 384-410.
10 Heo, J.S., Choi, J.W. 2017. Study on utilization and prospect of lignocellulosic bioethanol in ASEAN countries. Journal of the Korean Wood Science and Technology 45(5): 588-598.   DOI
11 Hong, C.Y., Park, S.Y., Kim, S.H., Lee, S.Y., Ryu, S.H., Choi, I.G. 2016. Biomodification of ethanol organosolv lignin by Abortiporus biennis and its structural change by addition of reducingagent. Journal of the Korean Wood Science and Technology 44(1): 124-134.   DOI
12 Li, H.Q., Li, C.L., Sang, T., Xu, J. 2013. Pretreatment on Micanthus lutarioriparius by liquid hot water for efficient ethanol production. Biotechnology for Biofuels 6: 76.   DOI
13 Yu, Q., Zhuang, X.,, Yuan, Z., Wang, W., Qi, W., Wang, Q., Tan, X. 2011. Step change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugar recovery. Applied Energy 88(7): 2472-2479.   DOI
14 Yu, Q., Zhuang, X., Wang, Q., Qi, W., Tan, X., Yuan, Z. 2012. Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Journal Bioresource Technology 116(2012): 220-225.   DOI
15 Yu, Q., Zhuang, X., Lv, S., He, M., Zhang, Y., Yuan, Z., Qi, W., Wang, Q., Wang, W., Tan, X. 2013. Liquid hot water pretreatment of sugarcane bagasse and its compatison with chemical pretreatment methods for the sugar recovery and structural changes. Journal Bioresource Technology 129(2013): 592-598.   DOI
16 Hongdan, Z., Shaohua, X., Subin, W. 2013. Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Journal Bioresource Technology 143(2016): 391-396.   DOI
17 Yu, H., Xing, Y., Lei, Fuhou., Liu, Z., Liu, Z., Jiang, J. 2014. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined. green liquor and ethanol organosolv. Journal Bioresource Technology 167: 46-52.   DOI
18 Zhang, X., Xu, C., Wang, H. 2007. Praperlakuan of Bamboo Residues with Coriolus versicolor for Enzymatic Hydrolysis. Journal of Bioscience and Bioengineering 104(2): 149-151.   DOI
19 Zhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., Zhou, G., Yuan, Z. 2015. Liquid hot water pretreatment of lignocellulosic biomass for bioethanolproduction accompanying with high valuable products. Journal Bioresource Technology 199: 68-75.
20 Hu, Z., Wen, Z. 2008. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal 38: 369-378.   DOI
21 Li, C., Cheng, G., Balan, V., Kent, M.S., Ong, M., Chundawat, S.P.S., Sousa, L.D., Melnichenco, Y.B., Dale, B.E., Simmons, B.A. 2011. Influence of physicochemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology 102(13): 6928-6936.   DOI
22 Li, X., Ximenes, E., Kim, Y., Slinger, M., Meilan, R., Ladisc, M., Chapple, C. 2010. Lignin monomer composition affects arabidopsis cell-wall degradability after liquid hot water praperlakuan. Biotechnology for Biofuels 3: 27.   DOI
23 Linde, M., Galbe, M., Zacchi, G. 2008. Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant. Journal Bioresource Technology 99(2008): 6505-6511.   DOI
24 Long, Sun, S., Jia, L.W., Ming, G.M., Xian, L.S., Run, C.S. 2014. Integated Biorefinery Based on Hydrothermal and Alkaline Treatments: Investigation of Sorghum Hemicelluloses. Carbohydrate Polymers 111: 663-669.   DOI
25 Michelin, M., Teixeira, J.A. 2016. Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtains thereof. Bioresource Technology 216: 862-869.   DOI
26 Cao, W., Chen, S., Ronghou, L., Renzhan, Y., Xiaowu, W. 2012. Comparison of Effects of Five Pretreatment Methods on Enhancing the Enzymatic Digestibility and Ethanol Production from Sweet Sorghum Bagasse. Bioresource Technology 111: 215-221.   DOI
27 Mosier, N., Wyman, C., Dale, B., Elander, R., Holtzapple, Y.Y.L.M., Ladisch, M. 2005. Features of promising technologies for pretreatmen of lignocellulosic biomass. Bioresource Technology 96: 673-686.   DOI
28 Amin, Y., Syafii, W., Wistara, N.J., Prasetya, B. 2014. Pengingkatan rendemen gula pereduksi dari kayu jabon (Anthocephalus cadamba Miq.) dengan perlakuan air kapur (Ca(OH)). Jurnal Ilmu dan Teknologi Kayu Tropis 12(2): 196-206.
29 Browning, B.L. 1967. Methods of Wood Chemistry. Volume ke-2. New York (US): Interscience.
30 Canilha, L., Chandel, A.K., Milessi, T.S., Antunes, F.A.F., Freitas, W.L.C., Felipe, A.G.A., Silva, S.S. 2012. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, 2012. 15pages.
31 Pu, Y., Hu, F., Huang, F., Davison, B.H., Ragauskas, A.J. 2013. Assessing the molecular structure for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels 6(15): 1-13.   DOI
32 Nazarpour, F., Abdullah, D.K., Abdullah, N., Zamiri, R. 2013. Evaluation of biological pretreatment of rubberwood with white rot fungi for enzymatic hydrolysis. Materials 6: 2059-2073.   DOI
33 Nelson, M.L., O'Connor RT. 1964. Relation of certain infared bands to cellulose crystallinity and crystal lattice type. Part II a new infared ratio for estimation of crystallinity in cellulose I and II. Journal of Applied Polymer Science 8: 1325-1341.   DOI
34 Pandey, K.K., Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry flowing decay by brown-rot and white-rot fungi. International Biodeterioration 52: 151-160.   DOI
35 Punyamurthy, R., Sampathkumar, D., Bennehalli, B., Srinivasa, C.V. 2013. Influence of Esterification on the Water Absorption Property of Single Abaca Fiber. Chemical Science Transactions 2: 413-422.   DOI
36 Qin, C., Clarke, K., Li, K. 2014. Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnology for Biofuels 7(65): 1-9.   DOI
37 [TAPPI] The Technical Association of the Pulp and Paper Industry. 1997. TAPPI Test Methods. TAPPI Press-Atlanta.
38 Ramos, L.P. 2003. The chemistry involved in the steam treatment of lignocellulosic materials. Quimica Nova 26: 863-871.   DOI
39 Ravindran, R., Jaiswal, A.K. 2015. A Comprehensive review on pretreatment strategy for lignocellulosic food industry waste: challenges and opportunities. Journal Bioresource Technology 199: 92-102.   DOI
40 Sierra, R., Granda, C.B., Holtzapple, M.T. 2009. Lime Pretreatment. Di dalam: Mielenz J R, editor. Biofuels:Methods in Molecular Biology. 581: 115-124. Humana Press
41 Erdei, B., Barta, Z., Sipos, B., Reczey, K., Galbe, M., Zacchi, G. 2010. Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels 3(16): 1-9.   DOI
42 Chen, H., Yejun, H., Jian, X. 2010. Simultaneous Saccharification and Fermentation of Steam Expolded Wheat Straw Pretreated with Alkalie Peroxide. Process Biochemistry 43:1462-1466.   DOI
43 Dence, C.W. 1992. The Determination of Lignin. Di dalam: Lin SY, Dence CW, editor. Methods in Lignin Chemistry. Heidelberg (DE): Springer-Verlag. Hlm. 33-61.
44 Dowe, N., McMillan, J. 2008. SSF Experimental Protocols-LignocellulosicBiomass Hydrolysis and Fermentation. Technical Report NREL/TP-510 42630.Colorado,US.
45 Falah, F., Fatriasari, W., Ermawar, R.A., Nugroho, D.T.A., Hermiati, E. 2011. Effect of corn steep liquor on bamboo biochemical pulping using Phanerochaete chrysosporium. Jurnal Ilmu dan Teknologi Kayu Tropis 9(2): 111-125.
46 Fajriutami, Y., Fatriasari, W., Hermiati, E. 2016. Pengaruh praperlakuan basa pada ampas tebu terhadap karakteristik pulp dan produksi gula pereduksi. Jurnal Riset Industri 10(3): 147-161.
47 Fatriasari, W., Ermawar, R.A., Falah, F., Yanto, D.H.Y., Adi, D.T.N., Anita, S.H., Hermiati, E., 2011. Kraft and soda pulping of white rot pretreated betung bamboo. Jurnal Ilmu dan Teknologi Kayu Tropis 9(1): 42-55.
48 Fatriasari, W., Syafii, W., Wistara, N.J., Syamsu, K., Prasetya, B. 2014. The characteristic chanes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. International Journal of Renewable Energy Development 3(2): 133-143.
49 Um, M., Shin, G.J., Lee, J.W. 2016. Enhancement of ethanol production by the removal of fermentation inhibitors, and effect of lignin-derived inhibitors on fermentation. Journal of the Korean Wood Science and Technology 44(3): 389-397.   DOI
50 Ferraz, A., Guerra, A. Mendoca, A.R., Masarin, F., Vicentim, M.P., Aguiar, A., Pavan, P.C. 2008. Technological advances and mechanistic basis for fungal biopulping. Enzyme and Microbial Technology 43: 178-185.   DOI
51 Wang, L., Han, G., Zhang, Y. 2008. Comparative study of composition, structure and properties of apocynum venetum fibers under different pretreatments. Carbohydrate Polymers 69(2): 391-397   DOI
52 Wang, W., Zhuang, X., Yuan, Z., Qi, W., Yu, Q., Wang, Q. 2016. Structural changes of lignin after liquid hot water pretreatment and its effect on the enzymatic hydrolysis. BioMed Research International 2016: 7pages.
53 Wistara, N.J., Carolina, A., Pulungan, W.S., Emil, N., Lee, S.H., Kim, N.H. 2015. Effect oftree age and active alkali on kraft pulping of white jabon. Journal of the Korean Wood Science and Technology 43(5): 566-577.   DOI