• Title/Summary/Keyword: Matrix structure

Search Result 2,565, Processing Time 0.025 seconds

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

Genetic Variation and Population Structure of the Slender Bitterling Acheilognathus lanceolatus of Korea and Japan as Assessed by Amplified Fragment Length Polymorphism (AFLP) Analysis (AFLP 분석에 의한 한국과 일본의 납자루 Acheilognathus lanceolatus의 유전 변이와 집단 구조)

  • Yun, Young-Eun;Kim, Chi-Hong;Kim, Keun-Yong;Ishinabe, Toshihiro;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.22 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Genetic variation and population structure of the slender bitterling Acheilognathus lanceolatus of Korea (the Han, Geum, Dongjin, Seomjin and Nakdong Rivers) and Japan (the Katsura River) were assessed by amplified fragment length polymorphism (AFLP) analysis. Five combinations of selective primers generated 345~374 DNA fragments, of which 55~131 were polymorphic. The Nakdong River population had the highest genetic diversity and the Han River population had the lowest genetic diversity. Dendrogram based on the distance matrix revealed that individuals from each population consistently clustered together and bifurcated into two distinct clades (or population groups) composed of the Han, Geum, Dongjin and Seomjin River populations and of the Nakdong and Katsura River populations, supported with high bootstrap values. The pairwise genetic differentiation ($F_{ST}$) estimates showed that the six populations were genetically well differentiated (P<0.01). The analysis of molecular variance (AMOVA) after partitioning the six populations into two population groups revealed very strong biogeographic structuring between them with 25.49% of total variance (P<0.01). Taken together, the AFLP markers clearly divided six A. lanceolatus populations into two population groups.

Level Set Based Topological Shape Optimization of Hyper-elastic Nonlinear Structures using Topological Derivatives (위상 민감도를 이용한 초탄성 비선형 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.559-567
    • /
    • 2012
  • A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.

The Crystal Structure of Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ) (Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ)의 결정구조)

  • Kim, Se Hwan;NamGung, Hae;Lee, Hyeon Mi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.827-832
    • /
    • 1994
  • The crystal structure of bis(N-methylphenazinium) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: ((C_{13}H_{11}N_2)_2[Pd(C_2O_4)_2]) $M_w$ = 672.93, Triclinic, Space Group P1 (No = 2), a = 7.616(8), b = 9.842(3), c = $20.335(7)\AA$, $\alpha$ = 103.53(3), $\beta$ = 90.00(5), $\gamma$ = $112.38(5)^{\circ}$, Z = 2, $V = 1363(2){\AA}^3\;D_c = 1.639\;gcm^{-3},\;{\mu} = 7.3\;cm^{-1},\;F(000) = 680.0$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$= 0.7107\;\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-square methods using Killean & Lawrence weights. The final R and S values were $R = 0.069,\;R_w = 0.050,\;R_{all} = 0.069$ and S = 5.45 for 3120 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of 6.3(6) and $57.06(6)^{\circ}$ between their planes. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations of two triads are 3.328 and 3.463 $\AA$, respectively. The triads are stacked along b-axis, but their orientations are different based on dihedral angle $59.08(9)^{\circ}$ of two complex anions.

  • PDF

A Study on the Compression Moldability for Continuous Fiber-Reinforced Polymeric Composites -Part II : Effect of Correlation Coefficient on Compression Moldability- (연속섬유강화 플라스틱 복합재료의 압축성형성에 관한 연구 -제II보 : 압축성형성에 미치는 상관계수의 영향-)

  • 오영준;김이곤
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • During the compression molding process of the continuous fiber-reinforced polymeric composites, two main problems such as fiber-matrix separation and fiber orientation are produced by the difference of flow velocity. Molded parts are lead to be nonhomogeneous and anisotropic. As the mechanical property of the products are dependent on the separation and orientation, it is important to research the fiber mat structure and molding condition. If the fiber mat structure is changed by the increment of needling, the separation decreases and after compression molding the orientation is easily aligned. As it were, the compression moldability is good. But the defects as tears, thin thickness are produced in the products. Therefore, it is important to clarify the moldability in relation to the usage of products and the expenses of produce on the actual process. Therefore we must make the measurement methods that can define the moldability of products. In this research, the effects of the fiber mat structure(NP = 0, 5, 10, 25, 50 punches/$cm^2$) and the mold geometry($r_p$ = 1, 25, 50 mm) on the moldability of products were discussed. We investigated the case of one-dimensional flow in order to obtain the degree of nonhomogeneity and the fiber orientation function. In result, we could gain the correlation coefficient of the continuous fiber-reinforced polymeric composites. Also we experimented on the cup-type compression molding which was appeared the wrinkle on the flange part by the complex stress condition in order to gain the degree of nonhomogeneity and area ratio. In result, the moldability of products was expressed as the correlation coefficient and area ratio.

  • PDF

A Study on the Critical Point and Bifurcation According to Load Mode of Dome-Typed Space Frame Structures (돔형 스페이스 프레임 구조물의 하중모드에 따른 분기점 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Lee, Seung-Jae;Kim, Jong-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.121-130
    • /
    • 2011
  • Space frame structures have the advantage of constructing a large space structures without column and it may be considered as a shell structure. Nevertheless, with the characteristics of thin and long term of spacing, the unstable problem of space structure could not be set up clearly, and there is a huge difference between theory and experiment. Therefore, in this work, the tangential stiffness matrix of space frame structures is studied to solve the instability problem, and the nonlinear incremental analysis of the structures considering rise-span ratio(${\mu}$) and the ratio of load($R_L$) is performed for searching unstable points. Basing on the results of the example, global buckling can be happened by low rise-span ratio(${\mu}$), nodal buckling can be occurred by high rise-span ratio(${\mu}$). And in case of multi node space structure applying the ratio of load($R_L$), the nodal buckling phenomenon occur at low the ratio of load($R_L$), the global buckling occur a1 high the ratio of load($R_L$). In case of the global buckling, the load of bifurcation is about from 50% to 70% of perfect one's snap-through load.

Analyzing the Structure of Science Gifted and General Middle School Students' Values of Career: Social Network Approach (중학교 과학영재학생과 일반학생들의 직업가치관 구조분석: 사회네트워크적 접근)

  • Shin, Sein;Lee, Jun-Ki;Ha, Minsu;Lee, Tae-Kyong;Jung, Young-Hee
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.2
    • /
    • pp.195-216
    • /
    • 2015
  • Students' perceived values of career play a core role in formation of their career motivation. In particular, science gifted students should build sound values of career in science and technology so that our society can retain the human resources for future science and technology. This study compared and analyzed the structure of science gifted and general middle school students' preferred job and values of career using semantic network analysis. Methodologically, we first collected science gifted and general middle school students' preferred careers and the reasons of the career choice using survey method. Then, we structuralize semantic networks of students' perceived values of their preferred careers using semantic network analysis. We identified the characters of networks that two different student groups showed based on the structure matrix indices of semantic network analysis. Findings revealed that science gifted students considered the creativeness as the most important value of career. Second, science gifted students considered more diverse values of career than general students. Third, science gifted students considered the self-realization such as displaying capability as a core value of career in STEM and medical science whereas general students considered the community service as a core value of the careers. This study identified the significant differences between science gifted and general middle school students' values of careers. The structures of students perceived values of careers can be used for teachers to counsel their students about students' future careers.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.