• Title/Summary/Keyword: Matrix properties

Search Result 3,367, Processing Time 0.033 seconds

CANONICAL FORM OF AN TRANSITIVE INTUITIONISTIC FUZZY MATRICES

  • LEE, HONG-YOUL;JEONG, NAE-GYEONG
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.543-550
    • /
    • 2005
  • Some properties of a transitive fuzzy matrix are examined and the canonical form of the transitive fuzzy matrix is given using the properties. As a special case an open problem concerning idempotent matrices is solved. Thus we have the same result in a intuitionistic fuzzy matrix theory. In our results a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix play an important role. We decompose a transitive intuitionistic fuzzy matrix into sum of a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix. Then we obtain a canonical form of the transitive intuitionistic fuzzy matrix.

  • PDF

SOME PROPERTIES OF A CERTAIN PATTERNED MATRIX

  • Park, Jong-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.485-493
    • /
    • 2004
  • This paper presents the interesting properties of a certain patterned matrix that plays an significant role in the statistical analysis. The necessary and sufficient condition on the existence of the inverse of the patterned matrix and its determinant are derived. In special cases of the patterned matrix, explicit formulas for its inverse, determinant and the characteristic equation are obtained.

Mechanical Properties of Particle and Fiber Reinforced SMC Composites (입자와 섬유로 보강된 SMC 복합재의 기계적 특성에 관한 연구)

  • 정현조;윤성호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • An analytical model has been developed to predict the elastic properties of a filled resin reinforced by chopped fibers, a three-phase composite such as a filled sheet molding compound(SMC). In the model the matrix material and fillers form an effective matrix. The effective matrix is then considered to be reinforced with long fibers lying in the sheet plane but randomly oriented in the plane. Expressions for the resulting transversely isotropic composite properties are explicitly presented. Using this model, the Young's and shear moduli are calculated for the SMC sample with filler weight fraction of 35% and fiber content of 30%. The same properties are also determined experimentally. The agreement between the calculated and measured elastic moduli is found to be very good for the in-plane properties. However, the out-of-plane properties show a large difference because the effect of voids is not taken into account in the model.

  • PDF

Effects of water-cement ratio on fiber-matrix interface characteristics and matrix fracture toughness (섬유-모르타르 경계면과 모르타르의 역학적 특성에 미치는 물-시멘트비의 영향)

  • Kim, Yun-Yong;Kim, Jeong-Su;Kim, Hee-Sin;Kim, Jin-Keun;Ha, Gee-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.336-339
    • /
    • 2004
  • This paper presents an experimental investigation examining water-cement ratio effects on fiber-matrix interface properties and on matrix fracture properties, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix, respectively. Test results showed that the properties tended to increase with decreasing water-cement ratio. Composite design using these test results will be discussed in the follow-up paper.

  • PDF

Finite Element Analysis for Effective Properties of Ceramic Matrix Plain Woven Textile Composites (유한요소법을 이용한 평직 세라믹 기지 복합재료의 등가물성치 산정)

  • Lee, Sung-Wook;Cho, Chong-Du
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1163-1167
    • /
    • 2003
  • Effective properties of ceramic matrix plain woven textile composites were calculated using finite element analysis. The considered geometry is a unit cell of plain weave and the analysis was performed by commercial finite element program, ANSYS. The materials for analysis are 3 types for matrix, 1 type for fiber with various volume fraction. The result indicates that the effective properties of ceramic matrix composites can be controlled by the volume fraction. The result can be used for numerical analysis using ceramic matrix composites.

  • PDF

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I))

  • Kang Ji-Woong;Kim Sang-Tae;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

OPERATIONAL IDENTITIES FOR HERMITE-PSEUDO LAGUERRE TYPE MATRIX POLYNOMIALS AND THEIR APPLICATIONS

  • Bin-Saad, Maged G.;Pathan, M.A.
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.35-49
    • /
    • 2019
  • In this work, it is shown that the combination of operational techniques and the use of the principle of quasi-monomiality can be a very useful tool for a more general insight into the theory of matrix polynomials and for their extension. We explore the formal properties of the operational rules to derive a number of properties of certain class of matrix polynomials and discuss the operational links with various known matrix polynomials.

A Study on the Frictional Abrasion Properties of MMC (금속기 복합재료의 마찰ㆍ마모 특성에 관한 연구)

  • 이광영;박원조;허선철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.171-177
    • /
    • 2002
  • Metal matrix composites had generated a lot of interest in recent times because of significant in specific properties, it was also highlighted as the material of frontier industry because strength, heat-resistant, corrosion-resistant and wear-resistant were superiored. In recent years, the study of metal matrix composite has increased by aluminum alloy. The study is based on the tribological properties of AC4CH that is a part of the mechanical property of metal matrix composites. Metal matrix composite that is produced from matrix material AC4CH and reinforcement SiO$_2$, Al$_2$O$_3$ and TiO$_2$ are added to the metal matrix composite fur strength so binding among the whisker can take place. Each metal matrix composite is produced using the squeeze casting method. To test for tribe a pin-on-disk machine and lubricant is used without paraffine 8.2CST at room temperature which is 40$\^{C}$. As the results of this study, the tribological properties of each specimen are more improved than AC4CH. The variation of coefficient resistance is more stable at the AC4CH and TiO$_2$, but the variation rates are higher at the inanimate binder.

Study on Material Properties of Composite Materials using Finite Element Method (유한요소법을 이용한 복합재의 물성치 도출에 대한 연구)

  • Jung, Chul-Gyun;Kim, Sung-Uk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.61-65
    • /
    • 2016
  • Composites are materials that are widely used in industries such as automobile and aircraft. The composite material is required as a material for using in a high temperature environment as well as acting as a high pressure environment like the nozzle part of the ship. It is important to know the properties of composites. Result values obtained substituting the properties of matrix and fiber numerically have an large error compared with experimental value. In this study we utilize CASADsolver EDISON program for using Finite Element Method. Properties by substituting the fiber and Matrix properties of the composite material properties were compared with those measured in the experiment and calculated by the empirical properties.