• Title/Summary/Keyword: Matrix pencil

Search Result 36, Processing Time 0.028 seconds

A Super-resolution TDOA estimator using Matrix Pencil Method (Matrix Pencil Method를 이용한 고분해능 TDOA 추정 기법)

  • Ko, Jae Young;Cho, Deuk Jae;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.833-838
    • /
    • 2012
  • TDOA which is one of the position estimation methods is used on indoor positioning, jammer localization, rescue of life, etc. due to high accuracy and simple structure. This paper proposes the super-resolution TDOA estimator using MPM(Matrix Pencil Method). The proposed estimator has more accuracy and is applicable to narrowband signal compared with the conventional cross-correlation. Furthermore, its complexity is low because obtained data directly is used for construction of matrix unlike the MUSIC(Multiple Signal Classification) which is one of the well-known super-resolution estimator using covariance matrix. To validate the performance of proposed estimator, errors of estimation and computational burden is compared to MUSIC through software simulation.

Joint Time Delay and Angle Estimation Using the Matrix Pencil Method Based on Information Reconstruction Vector

  • Li, Haiwen;Ren, Xiukun;Bai, Ting;Zhang, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5860-5876
    • /
    • 2018
  • A single snapshot data can only provide limited amount of information so that the rank of covariance matrix is not full, which is not adopted to complete the parameter estimation directly using the traditional super-resolution method. Aiming at solving the problem, a joint time delay and angle estimation using matrix pencil method based on information reconstruction vector for orthogonal frequency division multiplexing (OFDM) signal is proposed. Firstly, according to the channel frequency response vector of each array element, the algorithm reconstructs the vector data with delay and angle parameter information from both frequency and space dimensions. Then the enhanced data matrix for the extended array element is constructed, and the parameter vector of time delay and angle is estimated by the two-dimensional matrix pencil (2D MP) algorithm. Finally, the joint estimation of two-dimensional parameters is accomplished by the parameter pairing. The algorithm does not need a pseudo-spectral peak search, and the location of the target can be determined only by a single receiver, which can reduce the overhead of the positioning system. The theoretical analysis and simulation results show that the estimation accuracy of the proposed method in a single snapshot and low signal-to-noise ratio environment is much higher than that of Root Multiple Signal Classification algorithm (Root-MUSIC), and this method also achieves the higher estimation performance and efficiency with lower complexity cost compared to the one-dimensional matrix pencil algorithm.

Matrix Pencil Method Using Fourth-order Statistic (4차 통계량을 이용한 Matrix Pencil Method)

  • Jang Woo-Jin;Wang Yi-Su;Zhou Wei-Wei;Koh Jin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.629-636
    • /
    • 2006
  • In array signal processing, high order statistics can be used to estimate parameters from signal of sums of complex exponential. In this paper, we derive two types of direction finding algorithms which use the fourth-order cumulant and moment of the received array data. Since the fourth order cumulant can suppress the Gaussian noise, the response of MPM has better noise immunity than the conventional approaches. The performance of each method in regard to the probability of resolution and SNR in the presence of the Gaussian noise is investigated. As a result, the proposed method applied to the fourth-order statistic can find DOA more correctly in the presence of the Gaussian noise.

DOD/DOA Estimation for Bistatic MIMO Radar Using 2-D Matrix Pencil Method (2차원 Matrix Pencil Method 기반의 바이스태틱 MIMO 레이더 표적 도래각 추정)

  • Lee, Kang-In;Kang, Wonjune;Yang, Hoon-Gee;Chung, Wonzoo;Kim, Jong Mann;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.782-790
    • /
    • 2014
  • In this paper, we apply the 2-D Matrix Pencil Method(MPM) to the estimation of the direction of arrival(DOA) of multiple signals of interest(SOIs) in bistatic MIMO radar. The 2-D MPM shows remarkable performance under a low SNR environment and low computational complexity to estimate the DOA of multiple SOIs. Also, it is possible to estimate the direction of departure(DOD) which is an angle from transmitter to target. To verify the proposed algorithm, we applied the proposed algorithm to a uniformly spaced linear array(ULA) and compared the RMSE(Root Mean Square Error) of DOA and DOD under the various SNR with those of the 2-D Capon algorithm.

Output only structural modal identification using matrix pencil method

  • Nagarajaiah, Satish;Chen, Bilei
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.395-406
    • /
    • 2016
  • Modal parameter identification has received much attention recently for their usefulness in earthquake engineering, damage detection and structural health monitoring. The identification method based on Matrix Pencil technique is adopted in this paper to identify structural modal parameters, such as natural frequencies, damping ratios and modal shapes using impulse vibration responses. This method can also be applied to dynamic responses induced by stationary and white-noise inputs since the auto- and cross-correlation function of the two outputs has the same form as the impulse response dynamic functions. Matrix Pencil method is very robust to noise contained in the measurement data. It has a lower variance of estimates of the parameters of interest than the Polynomial Method, and is also computationally more efficient. The numerical simulation results show that this technique can identify modal parameters accurately even if the noise level is high.

Matrix Pencil Method를 이용한 고분해능 TDOA 추정 기법

  • Go, Jae-Yeong;Jo, Deuk-Jae;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.59-61
    • /
    • 2012
  • TDOA 기법은 위치추정 기법의 하나로 간단한 구조와 높은 정확도를 가지는 장점으로 인해 실내측위, 군사, 의료 분야 등에 자주 사용된다. 본 논문에서는 MPM(Matrix Pencil Method)를 이용한 고분해능 TDOA 추정 기법을 제안한다. 제안된 기법은 기존의 교차상관을 이용한 TDOA 기법에 비교하여 높은 정확도를 가지며 CW(Continuous Wave)와 같은 협대역 신호에 적용이 가능하다. 또한 잘 알려진 고분해능 기법 중 하나인 MUSIC(Multiple Signal Classification)에서 공분산 행렬을 사용하는 것과 달리 수집된 데이터를 바로 행렬로 만들어 사용하므로 복잡성이 낮은 특징이 있다. 제안된 기법의 성능을 검증하기 위해 소프트웨어 시뮬레이션 통해 SNR에 따른 오차와 연산량 측면에서 MUSIC 기법과 비교하였다.

  • PDF

Estimating Three-Dimensional Scattering Centers of a Target Using the 3D MEMP Method in Radar Target Recognition (레이다 표적 인식에서 3D MEMP 기법을 이용한 표적의 3차원 산란점 예측)

  • Shin, Seung-Yong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.130-137
    • /
    • 2008
  • This paper presents high resolution techniques of three-dimensional(3D) scattering center extraction for a radar backscattered signal in radar target recognition. We propose a 3D pairing procedure, a new approach to estimate 3D scattering centers. This pairing procedure is more accurate and robust than the general criterion. 3D MEMP(Matrix Enhancement and Matrix Pencil) with the 3D pairing procedure first creates an autocorrelation matrix from radar backscattered field data samples. A matrix pencil method is then used to extract 3D scattering centers from the principal eigenvectors of the autocorrelation matrix. An autocorrelation matrix is constructed by the MSSP(modified spatial smoothing preprocessing) method. The observation matrix required for estimation of 3D scattering center locations is built using the sparse scanning order conception. In order to demonstrate the performance of the proposed technique, we use backscattered field data generated by ideal point scatterers.

A Study on the Performance Analysis of Sidelobe Blanker using Matrix Pencil Method (Matrix Pencil Method 기반의 부엽차단기 성능분석 연구)

  • Yeo, Min-Young;Lee, Kang-In;Yang, Hoon-Gee;Park, Gyu-Churl;Chung, Young-Seek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1242-1249
    • /
    • 2017
  • In this paper, we propose a new algorithm for the performance analysis of the sidelobe blanker (SLB) in radar system, which is based on the matrix pencil method (MPM). In general, the SLB in radar is composed of the main antenna, the auxiliary antenna, and the processing unit. The auxiliary antenna with wide beamwidth receives interference signals such as jamming or clutter signals. The main antenna with high gain receives the target signal in the main beam and the interference signals in the sidelobe. In this paper the Swerling model is used as the target echo signal by considering a probabilistic radar cross section (RCS) of the target. To estimate the SLB performance it needs to calculate the probability of target detection and the probability of blanking the interference by using the signals received from the main and auxiliary antennas. The detection probability and the blanking probability include multiple summations of infinite series with infinite integrations, of which convergence rate is very slow. Increase of summation range to improve the calculation accuracy may lead to an overflow error in computer simulations. In this paper, to resolve the above problems, we used the MPM to calculate a summation of infinite series and improved the calculation accuracy and the convergence rate.

Dissipation Inequality of LTI System Based on Pencil Model

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.135-140
    • /
    • 1998
  • The concept of dissipativity and passivity are of interest to us from a theoretical as well as a practical point of view. It is well known that the Riccati equation is derived from the dissipation inequality which expresses the fact that the system is dissipative; the energy stored inside the system doesn't exceed the amount of supply which flows into the system. The pencil model is regarded as a representation based on behavioral approach introduced by J.C. Willems. It has first order in the internal variable and zeroth order in the external variable. In general, any matrix pencil is transformed into a canonical form which is consist of several kind of sub-pencils, One of them has row full rank for $^\forall S\;\in\;\mathds{C}\;\bigcup{\infty}$, we call it under-determined mode of the model. In our opinion, most important properties of dynamical system lay in the mode. According to the properties of canonical form for pencil, it is shown that the storage function which characterizes the dissipativity of the system can be written as a LMI for the under-determined mode, if the system doesn't include impulse mode.

  • PDF

Detection of Long Alkyl Esters of Succinic and Maleic Acid Using TLC-MALDI-MS

  • Kim, Hin-Hee;Han, Sang-Pil;Kim, Jeong-Kwon;Kim, Yeong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.915-920
    • /
    • 2011
  • Four esters of succinic and maleic acid were synthesized, separated by thin-layer chromatography (TLC), and identified using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). A comparison of matrix materials showed that 2,6-dihydroxybenzoic acid (2,6-DHB) yielded a greater ionization efficiency than 2,5-DHB prior to TLC separation. The location of each ester sample on the TLC plate was estimated by comparing the developed plate with a duplicate plate that had been visualized by immersion in a $KMnO_4$ solution. Generally, mass spectra obtained from the $KMnO_4$-visualized plate were relatively poor. Reproducible mass spectra with high peak abundance were difficult to obtain using the 2,6-DHB matrix from crude synthetic esters extracted from the TLC plates. Significant improvements in both reproducibility and sensitivity were realized by using pencil lead as the MALDI matrix. The current methodology will be beneficial to organic chemists since it can provide a guideline for simple and rapid characterization of small organic compounds.