• 제목/요약/키워드: Matrix laboratory

검색결과 747건 처리시간 0.027초

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.

Mechanical characterization of an epoxy panel reinforced by date palm petiole particle

  • Bendada, A.;Boutchicha, D.;Khatir, S.;Magagnini, E.;Capozucca, R.;Wahab, M. Abdel
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.627-634
    • /
    • 2020
  • The past years were marked by an increase in the use of wood waste in civil and mechanical constructions. Date palm waste remains also one of the most solicited renewable and recyclable natural resources in the composition of composite materials. In Algeria, a great amount of this type of plant wastes accumulates every year. In order to make use of this waste, a new wood-epoxy composite material based on date palm petiole particleboard is developed. It makes use of date palm petiole particleboard as reinforcement and epoxy resin as matrix. The size of the particles reinforcement are between 1~3 mm and proportion of reinforcement used is 37%. In this work, experimental and numerical studies are conducted in order to characterize the wood fibre-epoxy plates. Firstly, experimental modal analysis test was carried out to determine Young's modulus of the elaborated material. Then, in order to validate the results, compression test was conducted. Furthermore, additional information about the shear modulus of this material is obtained by performing an experimental modal analysis to extract the first torsional mode. Moreover, a finite element model is developed using ANSYS software to simulate the vibration behaviour of the plates. The results show a good agreement with the experimental modal analysis, which confirms the values of Young's modulus and shear modulus.

지르코니아 블록 폐기물을 이용한 싱글코어의 제조법 (Production of Single Core with Waste Zirconia Block)

  • 조준호;서정일;배원태
    • 대한치과기공학회지
    • /
    • 제35권1호
    • /
    • pp.57-64
    • /
    • 2013
  • Purpose: Waste parts of zirconia blocks and powders were remained after CAD/CAM process. In order to make these residual zirconia fit for practical use, zirconia single cores were produced by drain casting process. Methods: Remained zirconia blocks were reduced to powders with zirconia mortar, and screened with 180 mesh sieve. Zirconia slip was prepared from waste parts of zirconia by ball milling. Plaster molds for forming cores by slip casting were also prepared. Formed cores were removed from mold after partial drying. Dried cores were biscuit fired at $1,100^{\circ}C$ for 1hour. Biscuit fired cores were treated with tools to control the fitness and thickness. Finished cores were $2^{nd}$ fired at $1,500^{\circ}C$ for 1hour. Microstructure of cross section of core was observed by SEM. Results: When mill pot was filled with 100g of zirconia and alumina mixed powder, 300g of zirconia ball, and 180g of distilled water, the optimum slip for drain casting was obtained. Gypsum plaster for ceramic forming was more suitable then yellow stone plaster for casting process. SEM photograph showed the microstructure of fully dense with uniform grain size of zirconia and well dispersed alumina grains into the zirconia matrix. Conclusion: Zirconia single cores were produced by drain casting process. Drain casting is useful process to make these residual zirconia fit for practical use. Further study will be focused on the preparation of the bridge type cores by casting.

DNA 마이크로어레이 프린팅을 위한 사용자 인터페이스 적용기술 (Implementation of User Interface for DNA Micro Array Printing Technology)

  • 박재삼
    • 한국전자통신학회논문지
    • /
    • 제8권12호
    • /
    • pp.1875-1882
    • /
    • 2013
  • 마이크로 어레이 기술은 유전자 네트워크의 순서 와 게놈의 통합과 같은 많은 업적을 기여하고 있으며, 이러한 기술은 유전자 발현의 패턴을 조사하기 위한 수단 등으로 잘 확립 되어있다. DNA 마이크로배열은 Affymetric 칩을 이용하여 대량의 DNA 서열을 합성 할 수 있는데 기존의 DNA 어레이 스포팅에는 일반적으로 접촉방식과 압전전자 방법등 두가지 유형이 있다. 접촉방법은 유리 슬라이드 표면과 접촉하도록 스포팅핀을 사용하는데 이 방법은 표면 매트릭스의 손상이나 상처가 발생할 수 있어 단백질이 오염 되거나 특정 결합을 방해할 위험이 있다. 반면에 압전전자 방법은 대량 생산이 가능함에도 불구하고 결과를 인쇄할 분석기가 필요하므로 현재 실험실 내에서만 수행 가능한 실정이다. 본 논문에서 유리 슬라이드 표면에 닿지 않고 지속적으로 일관성 있게 스포팅이 가능하도록 하는 진보된 방법을 제시한다.

Effect of HTT on Bending and Tensile Properties of 2D C/C Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • 제6권4호
    • /
    • pp.234-242
    • /
    • 2005
  • Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to $2800^{\circ}C$) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at $2800^{\circ}C$, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on $1000^{\circ}C$ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT $1500^{\circ}C$ and in M40 fiber based composites at HTT $2500^{\circ}C$. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.

  • PDF

단결정 $YBa_2Cu_3O_{7-y}$ 벌크 초전도체 제조를 위한 경제적 공정의 개발 (Development of a Cost-Effective Process for the Fabrication of Single Grain $YBa_2Cu_3O_{7-y}$ Bulk Superconductors)

  • 박순동;김광모;전병혁;한영희;김찬중
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.133-138
    • /
    • 2011
  • To reduce the processing cost of the single grain REBCO (RE: Rare-earth elements) bulk superconductors, a cost-effective process should be developed. One possible way of developing the cost-effective process is the use of low-cost precursor powders. In this study, the single grain YBCO superconductors were fabricated using a home made powder. $YBa_2Cu_3O_{7-y}$ (Y123) powders were synthesized at $850-900^{\circ}C$ in air by the powder calcination method with repeated crushing and heat treatment steps. The processing parameters for the fabrication of single grain Y123 bulk superconductors, $T_{max}$ (maximum temperature), $T_p$ (peritectic temperature) and a cooling rate through $T_p$ were optimized. To enhance the flux pinning capacity of the single grain Y123 samples, $Y_2BaCuO_5$ (Y211) particles were dispersed in the Y123 matrix by adding $Y_2O_3$ powder to the calcined Y123 powder. Applying the optimized processing condition, the single grain Y123 superconductors with $T_c=91\;K$ and $J_c=1.5{\times}10^4\;A/cm^2$ at 2 T were successfully fabricated using a home made powder. The levitation forces and trapped magnetic field at 77 K measured using a Nd-B-Fe permanent magnet of 5300 G were 47 N and 3000 G, respectively, which are comparable to those obtained for the samples fabricated using a commercial grade Y123 powders.

담배종자의 파종 전처리가 발아 및 묘의 균일성에 미치는 영향 (Effects of Pre-sowing Treatments of Tobacco Seed on Germination and Seedling Uniformity)

  • 민태기
    • 한국작물학회지
    • /
    • 제38권6호
    • /
    • pp.507-512
    • /
    • 1993
  • 담배종자는 매우 미세하기 때문에 육묘과정에서 많은 노동력이 소요된다. 또 담배종자는 보통 2월 하순경부터 조기에 파종하는 경향이므로 저온조건에서의 발아의 안정성이 요구된다. 따라서 저온조건에서 발아가 촉진되고 또한 균일한 묘를 확보하기 위한 기술은 담배종자를 묘상에 직파했을 경우에 반드시 필요한 요건이 된다. 따라서 본시험에서는 파종 전에 담배종자를 여러 가지 방법으로 전처이하여 발아속도의 촉진 및 묘의 균일성에 미치는 영향 등을 조사하여 육묘의 성력화를 위한 기초자료를 제공하고자 하였다. 1. 파종 전 처리로 인하여 최종 발아율에는 영향을 미치지 않았으나 발아속도, 온실에서의 출현속도는 SMP, PEG, DPI처리에서 모두 향상되었으며 특히 SMP처리에서 월등하였다. 2. SMP처리에서 묘의 생장도 가장 켰고 아울러 묘가 가장 균일하였다. 3. SMP처리시 처리재료로 사용된 Agro-Lig의 수분함량은 일정량이상일 경우에 전처리효과에 큰 영향이 없는 것으로 나타났고 처리시의 온도는 높은 온도(2$0^{\circ}C$)에서 처리한 것이 낮은 온도(15$^{\circ}C$)에서 처리한 것보다 정의 방향으로 발아속도 및 출현속도에 영향이 켰다.

  • PDF

수축된 콜라겐 격자와 배양된 각질형성세포를 이용한 피부 대용물질의 제조에 관한 연구 (Preparation of Living Skin Equivalent by using the Contracted Collagen Lattice and Cultured Human Keratinocytes)

  • 박재경;조금철;박호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권1호
    • /
    • pp.51-62
    • /
    • 1993
  • An experimental study was performed for the preparation of living skin-equivalent by the using collagen gel contraction with human fibroblasts as neodermls and cultured human keratinocytes as neoderm is . The results were as follows ; 1) The rate of collagen gel contraction was dependent on the number of fibroblasts into the lattice and collagen contraction was progressed according to the increment of the number of the cells. 2) The rate of collagen gel contraction was progressed according to the decrement of the contraction of the collagen. 3) The rate of gel contraction was progressed according to the increment of serum concentration in the fixed concentration of the fibroblasts and collagen. 4) The lattice contraction was decreased according to the increment of the population doublings of the fibroblasts. 5) Macroscopically, the artificial dermis was gray white in color and tissue-like consistency and elas- ticity. 6) Microscopically, three dimensionally contracted artificial dermis showed more dense fibroblasts and its newly formed collagen fibrils in the matrix than one dimensionally contracted one. 7) Finally prepared skin-equivalent showed good attachment of living stratified keratinocytes to the dermal equivalent microscopically. It has been proposed that newly formed skin-equivalent is suitable for the graft of extensively and deeply burned patients. Shortening of the manufacturing period of skin-equivalent and development of conservation technique as a readily usable state are to be solved for our ongoing works.

  • PDF

Fast Search with Data-Oriented Multi-Index Hashing for Multimedia Data

  • Ma, Yanping;Zou, Hailin;Xie, Hongtao;Su, Qingtang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2599-2613
    • /
    • 2015
  • Multi-index hashing (MIH) is the state-of-the-art method for indexing binary codes, as it di-vides long codes into substrings and builds multiple hash tables. However, MIH is based on the dataset codes uniform distribution assumption, and will lose efficiency in dealing with non-uniformly distributed codes. Besides, there are lots of results sharing the same Hamming distance to a query, which makes the distance measure ambiguous. In this paper, we propose a data-oriented multi-index hashing method (DOMIH). We first compute the covariance ma-trix of bits and learn adaptive projection vector for each binary substring. Instead of using substrings as direct indices into hash tables, we project them with corresponding projection vectors to generate new indices. With adaptive projection, the indices in each hash table are near uniformly distributed. Then with covariance matrix, we propose a ranking method for the binary codes. By assigning different bit-level weights to different bits, the returned bina-ry codes are ranked at a finer-grained binary code level. Experiments conducted on reference large scale datasets show that compared to MIH the time performance of DOMIH can be improved by 36.9%-87.4%, and the search accuracy can be improved by 22.2%. To pinpoint the potential of DOMIH, we further use near-duplicate image retrieval as examples to show the applications and the good performance of our method.

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • 제4권4호
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.