Browse > Article

Development of a Cost-Effective Process for the Fabrication of Single Grain $YBa_2Cu_3O_{7-y}$ Bulk Superconductors  

Park, Soon-Dong (Neutron Science Division, Korea Atomic Energy Research Institute)
Kim, Kwang-Mo (Neutron Science Division, Korea Atomic Energy Research Institute)
Jun, Byung-Hyuk (Neutron Science Division, Korea Atomic Energy Research Institute)
Han, Young-Hee (Green Growth Laboratory, Korea Electric Power Research Institute)
Kim, Chan-Joong (Neutron Science Division, Korea Atomic Energy Research Institute)
Publication Information
Abstract
To reduce the processing cost of the single grain REBCO (RE: Rare-earth elements) bulk superconductors, a cost-effective process should be developed. One possible way of developing the cost-effective process is the use of low-cost precursor powders. In this study, the single grain YBCO superconductors were fabricated using a home made powder. $YBa_2Cu_3O_{7-y}$ (Y123) powders were synthesized at $850-900^{\circ}C$ in air by the powder calcination method with repeated crushing and heat treatment steps. The processing parameters for the fabrication of single grain Y123 bulk superconductors, $T_{max}$ (maximum temperature), $T_p$ (peritectic temperature) and a cooling rate through $T_p$ were optimized. To enhance the flux pinning capacity of the single grain Y123 samples, $Y_2BaCuO_5$ (Y211) particles were dispersed in the Y123 matrix by adding $Y_2O_3$ powder to the calcined Y123 powder. Applying the optimized processing condition, the single grain Y123 superconductors with $T_c=91\;K$ and $J_c=1.5{\times}10^4\;A/cm^2$ at 2 T were successfully fabricated using a home made powder. The levitation forces and trapped magnetic field at 77 K measured using a Nd-B-Fe permanent magnet of 5300 G were 47 N and 3000 G, respectively, which are comparable to those obtained for the samples fabricated using a commercial grade Y123 powders.
Keywords
cost-effective process; low-cost precursor powders; flux pinning capacity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.-J. Kim, J. S. Yoon, K. No, S. C. Han, Y. H. Han and B-H. Jun, Supercond. Sci. Technol. 23 (2010) 125009.
2 M. Daeumling, J. M. Seuntjens and D. C. Laebalestier, Nature 346 332 (1990).
3 M. Murakami, Appl. Supercond. 1, 1157 (1993).
4 M. Morita. S. Takebayashi, M. Tanaka, K. Kimura, K. Miyamoto, K. Sawano, Adv. Supercond. III, 733 (1991).
5 M. Murakami, N. Sakai, T. Higuchi, S. I. Yoo, Supercond. Sci. Technol. 9, 1015 (1996).
6 Y. A. Jee, G. W. Hong, C. J. Kim, T. H. Sung, Supercond. Sci Technol. 11, 650 (1998).
7 T. Meignan, P. J. McGinn, C. Varanasi, Supercond. Sci. Technol. 10, 109 (1997).
8 W. Lo, D.A. Cardwell, C.D. Dewhurst, S.L. Dung, J. Mater. Res. 11, 786 (1996).
9 J. Ishiai, ISTEC J. 111, 35 (1998).
10 C. J. Kim, Y. A. Jee, S. C. Kwon, T. H. Sung, G. W. Hong, Physica C 315, 263 (1999).
11 C. Varanasi, P. J. McGinn, V. Pavate, E. P. kvam, J. Mater. Res. 10, 2251 (1995).
12 A. Endo, H. S. Chauhan, Y. Nakamura, Y. Shiohara, J. Mater. Res. 11. 1114 (1996).
13 S. Marinel, J. Wang, I. Monot, M.P. Delamare, J. Provost, G. Desgardin, Supercond. Sci. Technol. 10, 147 (1997).
14 P. Schatzle, G. Krabbes, G. Stover, G. Fuchs, D. Schlafer, Supercon. Sci. Technol. 12, 69 (1999).
15 Y. A. Jee, C. J. Kim, T. H. Sung, G. W. Hong, Supercond. Sci. Technol. 13, 195 (2000).
16 C. J. Kim, G. W. Hong, H. J. Oh, Physica C 357, 635 (2001).