• Title/Summary/Keyword: Matrix diffusion

Search Result 322, Processing Time 0.029 seconds

Diffusion-Weighted MR Imaging of Various Intracranial Diseases : Clinical Utility (다양한 두개강내 질환의 확산강조 자기공명영상 : 임상적 유용성)

  • 김영준
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.104-112
    • /
    • 1998
  • Purpose : To evaluate the clinical utility of diffusion-weighted imaging by analyzing the signal intersity of lesions in patients with various intracranial diseases. Materials and Methods : difusion-weighted MR imaging was prospectively perormed in randomly selected 70 patients with various intracranial idseases. They consisted of 20 patients with acute infarct, 21 patients with chronic infarct of small vessel disease, 14 patients with primary intracranial tumor, three patients with brain metastasis, five patient with brain abscess, five patients with brain abscess, five patients with cerebral hemorrhage, one patient with neurocysticercosis, and one patient with epidermoid cyst. the diffusion-weighted images were obtained immediately after routine T2-weighted imaging on a 1.5T MR unit using single shot spin echo EPI technique with 6500 ms TR, 107ms TE, $128{\times}128$ matrix, 1 number of excitation, $24{\times}24$ field of view, 5-7 mm slice thickness, 2-3 mm inter-slice gap. The diffusion-gradients (b value of ($1000s{\;}/{\;}textrm{mm}^2$)) were applied along three directions(x, y, z). On visual inspection of diffusion-weighted images, the signal intersity of lesions was arbitrarily graded as one of 5 grades. In quantitative assessment, we measured the signal intensity of all the lesions and the contralateral corresponding normal area using round region of interest(ROI), and then calculated the signal intensity ratio of the lesion to the normal brain parenchyma. Results : On visual inspection, markedly hyperintense signals were seen in all cases of acute infarct, brain abscess, epidermoid cyst, and neurocysticercosis in degenerating stage. In all cases of cerebral hematoma, the very high signal internsity was intermingled with low signal intensity. focal very high signal intersity was also seen in a solid portion of the tumor in a patient. the mean signal intensity ratios of all those lesions to the normal brain parenchyma were above 2.5. Gliosis, solid component of brain tumor, brain metastasis, and vasogenic dedma appeared isointense to the normal brain parenchyma in 71%, 64%, 100%, and 67%, respectively ; the mean signal intensity ratios of those lesions to the normal brain parenchyma ranged 1.15 to 1.28 and there was no significant difference among these(p>0.1). Cystic cerebromalacia and necrotic or cystic portions in tumor were markedly or slightly hypointense, and the mean signal intensity ratios were 0.45 and 0.42, respectively. Conclusion : Very high signal intensity of acute infarct, brain abscess, epidermoid cyst, and cystic neurocysticercosis in degenerating stage on diffusion-weighted images may be helpful in differentiating from other diseases that are hypointense or isointense to the normal brain parenchyma. It may be especially useful differentiation of brain abscess from brain tumor with necrotic or cystic portion.

  • PDF

Development of Specific Organ-Targeting Drug Delivery System (III)-In Vitro Study on Liver-Targeting Adriamycin Delivery System using Human Serum Albumin Microspheres- (장기표적용 약물수송체의 개발에 관한 연구(제 3보 -알부민 미립구를 이용한 Adriamycin의 간 표적용 수송체에 관한 in vitro 연구-)

  • Kim, Chong-Kook;Hwang, Sung-Joo;Yang, Ji-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.195-202
    • /
    • 1989
  • In attempt to improve the chemotherapeutic activity of adriamycin, adriamycin-entrapped HSA microspheres were prepared and investigated by the various in vitro experiments. The shape, surface characteristics and size distribution of HSA microspheres are observed by scanning electron microscopy. The in vitro drug release, albumin matrix degradation by protease of HSA microspheres were studied. The shape of HSA microspheres were spherical and the surface was smooth and compact. The size of HSA microspheres ranged from 0.4 to $2.5\;{\mu}m$ and have average diameters of 0.5 to $0.7\;{\mu}m$. The size distribution of HSA microspheres prepared by ultrasonication was mainly affected by albumin concentration and heating time in the process of hardening. In in vitro, almost all adriamycin was released from HSA microspheres for 8 hr. Analysis of the resulting adriamycin release profiles demonstrated that adriamycin is released from the microspheres in two distinct steps, a fast phase (until 30 min) followed by a much slower sustained release phase. Drug release, which is due to diffusion, was depended on the rate of matrix hydration. Drug release was largely affected by albumin concentration and heating temperature during the process of hardening. Albumin matrix degradation of HSA microspheres was affected by heating temperature and albumin concentration. Higher temperature and longer times generally produce harder, less porous, and slowly degradable microspheres.

  • PDF

Enhancement of the Characteristics of Cement Matrix by the Accelerated Carbonation Reaction of Portlandite with Supercritical Carbon Dioxide

  • Kim, In-Tae;Kim, Hwan-Young;Park, Geun-Il;Yoo, Jae-Hyung;Kim, Joon-Hyung;Seo, Yong-Chil
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.586-591
    • /
    • 2001
  • This research investigated the feasibility of the accelerated carbonation of cement waste forms with carbon dioxide in a supercritical state. Hydraulic cement has been used as a main solidification matrix for the immobilization of radioactive and/or hazardous wastes. As a result of the hydration reaction for major compounds of portland cement, portlandite (Ca(OH)$_2$) is present in the hydrated cement waste form. The chemical durability of a cement form is expected to increase by converting portlandite to the less soluble calcite (CaCO$_3$). For a faster reaction of portlandite with carbon dioxide, SCCD (supercritical carbon dioxide) rather than gaseous $CO_2$, in ambient pressure is used. The cement forms fabricated with an addition of slated lime or Na-bentonite were cured under ambient conditions for 28days and then treated with SCCD in an autoclave maintained at 34$^{\circ}C$ and 80atm. After SCCD treatment, the physicochemical properties of cement matrices were analyzed to evaluate the effectiveness of accelerated carbonation reaction. Conversion of parts of portlandite to calcite by the carbonation reaction with SCCD was verified by XRD (X-ray diffraction) analysis and the composition of portlandite and calcite was estimated using thermogravimetric (TG) data. After SCCD treatment, tile cement density slightly increased by about 1.5% regardless of the SCCD treatment time. The leaching behavior of cement, tested in accordance with an ISO leach test method at 7$0^{\circ}C$ for over 300 days, showed a proportional relationship to the square root of the leaching time, so the major leaching mechanism of cement matrix was diffusion controlled. The cumulative fraction leached (CFL) of calcium decreased by more than 50% after SCCD treatment. It might be concluded that the enhancement of the characteristics of a cement matrix by an accelerated carbonation reaction with SCCD is possible to some extent.

  • PDF

A Study on Interfacial Phenomena of Tungsten Fiber Reinforced Aluminium Matrix Composite under Thermal Cycles (W 섬유강화(纖維强化) Al 합금기지(合金基地) 복합재(複合材)의 열(熱)cycle에 따른 계면거동(界面擧動)에 관(關)한 연구(硏究))

  • Huh, J.G.;Kim, J.T.;Hyun, Ch.Y.;Kim, Y.S.;Kim, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.169-174
    • /
    • 1994
  • The reaction layer formed at interface between matrix and fiber has significant effects on the mechanical properties and behaviors of deformation m FRM. In this study, the mechanical properties and interfacial behaviors according to surface finishing on the fibers and according to heat treatment in FRM were investigated. FRM was fibricated by diffusion bonding method. In W/Al alloy composite and W/Al composite, W of which was coated with $WO_3$, the heat treatment was carried out thermal cycling method from 373K to 673K. In W/Al composite, W of which was coated with $WO_3$, growth of interface layer was hardly occured in spite of the increasing various thermal cycles. It was exhibited that oxidized W/Al composite were higher strength than non-oxidezed W/Al composite with the increasing thermal cycles. The compounds of fiber/matrix interface were analyzed into $WAl_{12}$, $WAl_7$, and $AlWO_3$, respectivly. Therefore the interfacial compounds of fiber/matrix seriously affected the mechanical properties and behaviors of deformation in FRM.

  • PDF

Study on the Dislocation Behavior during Creep in 12% Chromium Steel (12% Cr 강의 크리이프중 전위거동에 관한 연구)

  • Oh, Sea-Wook;Jang, Yun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.262-262
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

Study on the Dislocation Behavior during Creep in 12% Chromium Steel (12% Cr 강의 크리이프중 전위거동에 관한 연구)

  • Oh, Sea-Wook;Jang, Yun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

  • PDF

A Study on the Fabrication of Cast Iron-Babbitt Metal Composite Pipes by Centrifugal Casting Process (원심주조법에 의한 주철-Babbitt Metal 복합관 제조에 관한 연구)

  • Lee, Chung-Do;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.42-49
    • /
    • 1993
  • Conventional manufacturing process for cast iron-babbitt metal composite is complicate and bimetallic bonding by centrifugal casting is also difficult because their melting point is largely different and nonmetallic inclusion exists on outer shell. This study is aiming to simplify multistage process by adding Cu-powder as insert metals during cast iron solidification. The variables on fabrication of composite pipe are mold rotating speed and inner surface temperature of outer metal. The optimum temperature range for fusion bonding between cast iron and Cu-layer was $1100^{\circ}C-1140^{\circ}C$ in case of mold rotating speed was 700rpm. When the inner surface of Cu-layer was at $900^{\circ}C$, the value of interfacial hardness between Cu-layer and babbitt metal were higher than Cu-matrix by forming diffusion layer, interfacial products between Cu-layer and babbitt metal are proved to be $Cu_6Sn_5({\eta})$by XRD.

  • PDF

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

Influence of Binder Type on the Chloride Threshold Level for Steel Corrosion in Concrete

  • Moon Han-Young;Ann Ki-Yong;Jung Ho-Seop;Shin Dong-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.663-670
    • /
    • 2005
  • The present study concerns the influence of binder type on the chloride-induced corrosion being accompanied by the chloride threshold level (CTL), chloride transport and as their results the corrosion-free lift. Two levels of cement content, $30\%$ PFA and $65\%$ GGBS concrete were employed. It was found that the most dominant factor to the CTL is the entrapped air void content at the steel-concrete interface, irrespective of the chloride binding capacity, binder type and acid neutralisation capacity of cement matrix. The CTL for lower interfacial air void contents was significantly increased up to $1.52\%$ by weight of cement, whereas a same mix produced $0.35\%$ for a higher level of voids. Because of a remarkable reduction in the diffusion fur GGBS concrete, its time to corrosion ranges from 255 to 1,250 days, while the corrosion-free life for control varies from 20 to 199 days sand for $30\%$ PFA concrete from 200 to 331 days.

Influence of Super Carburization on the Roller Pitting Fatigue Life of 0.16C-0.60Si-2.00Cr-0.34Mo Steel (0.16C-0.60Si-2.00Cr-0.34Mo강의 피팅강도에 미치는 고탄소 침탄의 영향)

  • Shin, Jung-Ho;Lee, Woon-Jae;Kim, Young-Pyo;Ko, In-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.517-522
    • /
    • 2012
  • In this study, a super carburizing treatment was applied to improve roller pitting fatigue life. It produced excellent properties of surface hardness and temper softening resistance by forming precipitation of fine and spherodized carbides on a tempered marstensite matrix through the repeated process of carburization and diffusion after high temperature carburizing step 1. The cycle II performed two times carburizing/diffusion cycle (process) after super carburization at $1,000^{\circ}C$ had fine and spherodized carbides to subsurface $200{\mu}m$. In this case, the carbide was $(Fe,Cr)_3C$ and there was not any massive carbides. In the case of Cycle II, the roller pitting fatigue life had a 6.15 million cycles. It was improved 48% compared to normal gas carburizing treatment.