• Title/Summary/Keyword: Matrix coefficients

Search Result 500, Processing Time 0.041 seconds

Determination of Nitrovin in Fishery Products by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS를 이용한 수산물 중 니트로빈의 정량분석법 개발 및 검증)

  • Kim, Joohye;Shin, Dasom;Kang, Hui-Seung;Jeong, Jiyoon;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • The objective of this study was to develop a sensitive method for the identification and determination of nitrovin in fishery products by using a solid-phase extraction (SPE), as performed with a liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with a mixture of acetonitrile and water, and were then defatted with acetonitrile saturated hexane, after which further clean-up was accomplished with SPE on the hydrophilic-lipophilic balance (HLB) cartridges. The analytes were subsequently ionized in the positive mode of an electrospray ionization (ESI), and where thereby detected in a process of multiple reaction monitoring (MRM). The linearity (expressed as correlation coefficients) of the matrix calibration curves was > 0.985. The limit of the quantification for the nitrovin was measured at 0.001 mg/kg. The accuracy (expressed as average recovery) was noted between 72.1 and 122%. The precision (expressed as coefficient variation) was noted from 2.9 to 16.9%. According to the CODEX CAC/GL-71 guideline accuracy, precision, linearity, and limit of detection were determined in three matrices (which were flatfish, eel and shrimp). The proposed method was suitable for analyzing the associated nitrovin residues. This application and result can also be a factor to contribute to the non-detection drugs management in fishery products.

Development and Validation of an Analytical Method for β-Agonists in Livestock and Fishery Products Using LC-MS/MS (LC-MS/MS를 이용한 축·수산물 중 β-agonist계 시험법 개발 및 검증)

  • Lee, Tae Ho;Kim, Yu Ra;Park, Su Jeong;Kim, Ji Young;Choi, Jang Duck;Moon, Gui Im
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.135-151
    • /
    • 2022
  • BACKGROUND: The β-agonists known as phenyl ethanolamine derivatives have a conjugated aromatic ring with amino group. They are used as tocolytic agents and bronchodilator to human and animal generally, and some of them are used as growth promoters to livestock. METHODS AND RESULTS: β-agonists in samples were extracted by 0.4 N perchloric acid and ethyl acetate. The target compounds were analyzed by liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS). Validation of method was performed according to CODEX guidelines (CAC/GL-71). The matrix matched calibration gave correlation coefficients>0.98, and the obtained recoveries were in the range of 62.0-109.8%, with relative standard deviation ≤ 20.1%. In addition, a survey was performed to inspect any residual β-agonist from 100 samples of livestock and fishery products and ractopamine was detected in one of the 100 samples. CONCLUSION(S): In this study, we established the analytical method for β-agonists through using the expanded target compounds and samples. And we anticipate that the established method would be used for analysis to determine veterinary drug residues in livestock and fishery products.

Study Analysis of Isocycloseram and Its Metabolites in Agricultural Food Commodities

  • Ji Young Kim;Hyochin Kim;Su Jung Lee;Suji Lim;Gui Hyun Jang;Guiim Moon;Jung Mi Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.71-81
    • /
    • 2023
  • An accurate and easy-to-use analytical method for determining isocycloseram and its metabolites (SYN549431 and SYN548569) residue is necessary in various food matrixes. Additionally, this method should satisfy domestic and international guidelines (Ministry of Food and Drug Safety and Codex Alimentarius Commission CAC/GL 40). Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to determine the isocycloseram and its metabolites residue in foods. To determine the residue and its metabolites, a sample was extracted with 20 mL of 0.1% formic acid in acetonitrile, 4 g magnesium sulfate anhydrous and 1 g sodium chloride and centrifuged (4,700 G, 10 min, 4℃). To remove the interferences and moisture, d-SPE cartridge was performed before LC-MS/MS analysis with C18 column. To verify the method, a total of five agricultural commodities (hulled rice, potato, soybean, mandarin, and red pepper) were used as a representative group. The matrix-matched calibration curves were confirmed with coefficients of determination (R2) ≥ 0.99 at a calibration range of 0.001-0.05 mg/kg. The limits of detection and quantification were 0.003 and 0.01 mg/kg, respectively. Mean average recoveries were 71.5-109.8% and precision was less than 10% for all five samples. In addition, inter-laboratory validation testing revealed that average recovery was 75.4-107.0% and the coefficient of variation (CV) was below 19.4%. The method is suitable for MFDS, CODEX, and EU guideline for residue analysis. Thus, this method can be useful for determining the residue in various food matrixes in routine analysis.

Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT (PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가)

  • Choong-Woon Lee;Yeon-Wook You;Jong-Woon Mun;Yun-Cheol Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF

Development of the Simultaneous Analysis of 36 Sulfonylurea Herbicide Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 제초제 Sulfonylurea계 36종 동시 시험법 개발)

  • Su Jung Lee;Jung Mi Lee;Gui Hyun Jang;Hyun-Kyung Kim;Ji Young Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.139-151
    • /
    • 2023
  • Sulfonylurea herbicides are widely used in agriculture because they have a long residual period and high selectivity. An analytical method was developed using QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) technique for simultaneous determination of sulfonylurea herbicide residues in agricultural products by liquid chromatography tandem mass spectrometry and for establishment MRL (Maximum Residue Limit) of those herbicides in Korea. Extraction was performed using acetonitrile containing 0.1% formic acid with MgSO4 (anhydrous magnesium sulfate) and NaCl (sodium chloride) and the extract was cleaned up using MgSO4 and C18 (octadecyl). The matrix-matched calibration curves were composed of 7 concentration levels from 0.001 to 0.25 mg/kg and their coefficients of determination (R2) exceeded 0.99. The recoveries of three spiking levels (LOQ, 10LOQ, 50LOQ, n=5) were in the range of 71.7-114.9% with relative standard deviations of less than 20.0% for all the five agriculture products. All validation values met criteria of the European Union SANTE/11312/2021 guidelines and Food and Drug Safety Evaluation guidelines. Therefore, the proposed analytical method was accurate, effective, and sensitive for sulfonylurea herbicide residues determination in agricultural commodities.

Analysis of Systemic Pesticide Imidacloprid and Its Metabolites in Pepper using QuEChERS and LC-MS/MS (QuEChERS 전처리와 LC-MS/MS를 이용한 고추 중 침투성농약 Imidacloprid 및 대사물질 동시분석법)

  • Seo, Eun-Kyung;Kim, Taek-Kyum;Hong, Su-Myeong;Kwon, Hye-Yong;Kwon, Ji-Hyung;Son, Kyung-Ae;Kim, Jang-Eok;Kim, Doo-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.264-270
    • /
    • 2013
  • Imidacloprid is a systemic insecticide which act as an insect neurotoxin. It used for control of pest such as aphids and other sucking insects in fruits and vegetables. Systemic pesticides move inside a crop following absorption by the plant, and these were converted into a variety of metabolites. Sometimes these metabolites make a problem about safety of agricultural products. So a simultaneous determination method of pesticide and its metabolites is needed, to monitor their presence in agricultural product and study on the fate of pesticide in a plant. This study's aim is to investigate simultaneous analysis method of imidacloprid and its metabolites, imidacloprid guanidine, imidacloprid olefin, imidacloprid urea, and 6-chloronicotinic acid in red pepper using QuEChERS method and LC-MS/MS systems. QuEChERS method was modifed beacuase $MgSO_4$ salts decreased the recoveries of 6-chloronicotinic acid in extraction procedure. Imidacloprid and its metabolites were extracted by acetonitrile with 1% glacial acetic acid and the extracts were purified through QuEChERS with primary secondary amine (PSA) and $C_{18}$ and analyzed with LC-MS/MS in ESI positive mode. Standard calibration curves were made by matrix matched standards and their correlation coefficients were higher than 0.999. Recovery studies were carried out on spiked pepper blank sample at four concentration levels (0.01, 0.04 and 0.1, 0.4 mg/kg). The average recoveries of imidacloprid and its metabolites were in the range of 70~120% with < 20% RSD. This result indicated that the method using QuEChERS and LC-MS/MS was suitable for the simultaneous determination of imidacloprid and its metabolites in red pepper.

Analytical method of aflatoxins in edible oil and infant-children foods (식용유지와 영유아식품 중 아플라톡신 분석방법)

  • Hu, Soo-Jung;Park, Seung-Young;Kim, Soon-Sun;Lee, Joon-Goo;Song, Ji-Young;Kang, Eun-Gi;Lee, Hyun-Sook;Cho, Dae-Hyun
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.150-157
    • /
    • 2011
  • Aflatoxins are secondary metabolites of the molds of Aspergillus flavus and Aspergillus parasiticus. They are highly carcinogenic compounds and can affect a wide range of vegetable commodities such as cereals (especially corn), nuts, peanuts, fruits and oil seeds, in the field and during storage. In fact, oilseeds are often stored for weeks in conditions that promote the mould growth, and the possible consequent presence of aflatoxins in oilseeds can lead to their transfer in oil. In addition, aflatoxins can be found as a natural contaminant in multi-cereals and beans making baby food for infants and young-children. The objective of this study was to validate the liquid extraction method or develop an analytical method for edible oil and infant-children foods. Therefore, this study developed condition of extract for aflatoxins ($B_1$, $B_2$, $G_1$ and $G_2$) in edible oil using a high performance liquid chromatography with florescence detector (HPLC/FLD). Aflatoxins were extracted from edible oil samples by means of MSPD (Matrix solid phased dispersion), utilizing $C_{18}$ as dispersing material and purified by using immunoaffinity column. The gression line coefficients were above 0.999. The recoveries for aflatoxins ranged from 85.9 to 93.0%, and relative standard deviations were below 5.7%. The new developed method of aflatoxins effectively enhanced recoveries by using MSPD-Immunoaffinity column compared with liquid extraction. The analytical method for liquid extraction of aflatoxin was appropriate for infant-children food. Reviewing the current method, the recoveries of aflatoxins ($B_1$, $B_2$, $G_1$ and $G_2$) were 89.5~92.3%.

Stabilization and Release Behavior of W1/O/W2-Type Multiple Emulsions Using Various Block Copolymer Emulsifier and Stabilizer (다양한 Block Copolymer를 유화제 및 안정화제로 사용한 W1/O/W2-Type 다중에멀젼의 방출거동 및 안정성)

  • Haw, Jung-Rim;Kim, Cheol-Hun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.560-567
    • /
    • 1997
  • A new approach to obtain stable $W_1/O/W_2$ multiple emulsions has been studied ; The basis of the interfacial interaction between a PCL-PEO-PCL triblock copolymer and a lipophilic emulsifier in the dispersed oil phase was examined. $W_1/O/W_2$ multiple emulsions were prepared by the two-step method. Arlacel P-l35 was used as a liphophilic emulsifier and Synperonic PE/F 127 as a hydrophilic one. Eutanol-G was used as an oil phase. NaCl was encapsulated within the multiple emulsion droplets as the internal marker and its release rate studies were carried out. The suability of the multiple emulsions have been assessed by measuring Separation Ratios(%) and microscopic observations. The release of NaCl was significantly reduced in $W_1/O/W_2$ multiple emulsions containing PCL-PEO-PCL triblock copolymer(2k-4k-2k or 6k-4k-6k) in the oil phase. It may be concluded that the copolymer and the emulsifier form effective interfacial complex to enhance stability and to control the release rate. The effective diffusion coefficients of the NaCl were estimated as $2.64{\times}10^{-15}s$and $3.23{\times}10^{-16}gcm^2/s$ for the $W_1/O/W_2$ multiple emulsion containing 1.2 wt % of PCL-PEO-PCL triblock copolymers with compositions of 2k-4k-2k and 6k-4k-2k, respectively. The rate of release decreased with the increase of the initial concentration of NaCl. The results were examined in view of Higuchi mechanism. A kinetic model which is similar to the model for release of dispersed drugs from a polymeric matrix was found to be suitable for the release of NaCl from $W_1/O/W_2$ multiple emulsions.

  • PDF

Development and Validation of Korean Composit Burn Index(KCBI) (한국형 산불피해강도지수(KCBI)의 개발 및 검증)

  • Lee, Hyunjoo;Lee, Joo-Mee;Won, Myoung-Soo;Lee, Sang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.163-174
    • /
    • 2012
  • CBI(Composite Burn Index) developed by USDA Forest Service is a index to measure burn severity based on remote sensing. In Korea, the CBI has been used to investigate the burn severity of fire sites for the last few years. However, it has been an argument on that CBI is not adequate to capture unique characteristics of Korean forests, and there has been a demand to develop KCBI(Korean Composite Burn Index). In this regard, this study aimed to develop KCBI by adjusting the CBI and to validate its applicability by using remote sensing technique. Uljin and Youngduk, two large fire sites burned in 2011, were selected as study areas, and forty-four sampling plots were assigned in each study area for field survey. Burn severity(BS) of the study areas were estimated by analyzing NDVI from SPOT images taken one month later of the fires. Applicability of KCBI was validated with correlation analysis between KCBI index values and NDVI values and their confusion matrix. The result showed that KCBI index values and NDVI values were closely correlated in both Uljin (r = -0.54 and p<0.01) and Youngduk (r = -0.61 and p<0.01). Thus this result supported that proposed KCBI is adequate index to measure burn severity of fire sites in Korea. There was a number of limitations, such as the low correlation coefficients between BS and KCBI and skewed distribution of KCBI sampling plots toward High and Extreme classes. Despite of these limitations, the proposed KCBI showed high potentials for estimating burn severity of fire sites in Korea, and could be improved by considering the limitations in further studies.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.