• Title/Summary/Keyword: Matrix coefficients

Search Result 498, Processing Time 0.027 seconds

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

Real Time AOA Estimation Using Neural Network combined with Array Antennas (어레이 안테나와 결합된 신경망모델에 의한 실시간 도래방향 추정 알고리즘에 관한 연구)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.87-91
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas. However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. The other problem of MUSIC and ESRPIT is to require calibrated antennas with uniform features, and are sensitive to the manufacturing facult and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected hopfield neural model. Computer simulations show the validity of the proposed algorithm. The proposed method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

  • PDF

Digital Cage Watermarking using Human Visual System and Discrete Cosine Transform (인지 시각시스템 및 이산코사인변환을 이용한 디지털 이미지 워터마킹)

  • 변성철;김종남;안병하
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • In this Paper. we Propose a digital watermarking scheme for digital images based on a perceptual model, the frequency masking, texture making, and luminance masking Properties of the human visual system(HVS), which have been developed in the context of image compression. We embed two types of watermark, one is pseudo random(PN) sequences, the other is a logo image. To embed the watermarks, original images are decomposed into $8\times8$ blocks, and the discrete cosine transform(DCT) is carried out for each block. Watermarks are casted in the low frequency components of DCT coefficients. The perceptual model adjusts adaptively scaling factors embedding watermarks according to the local image properties. Experimental results show that the proposed scheme presents better results than that of non-perceptual watermarking methods for image qualify without loss of robustness.

A Study on Forest Land Classification Using Multivariate Statistical Methods : A Case Study at Mt. Kwanak (다변수통계방법을 이용한 산지분류에 관한 연구)

  • 정순오
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.13 no.1
    • /
    • pp.43-66
    • /
    • 1985
  • Korea needs proper and rational public policies on conservation and use of forest land and other natural resources because of the accelerating expansion of national land developments in recent years. Unfortunately, there is no systematic planning system to support the needs. Generally, forest land use planning needs suitability analysis based on efficient land classification system. The goal of this study was to classify a forest land using multivariate satistical methods. A case study was carried out in winter of 1983 on a mountainous area higher than 100m above sea level located at Mt. Kwanak in Anyang -city, Kyung-gi-do (province). The study area was 19.80 km$^2$wide and was divided into 1, 383 Operational Taxonomic Units (OTU's) by a 120m$\times$120m grid. Fourteen descriptors were identified and quantified for each OTU from existing national land data : elevation, slope, aspect, terrain form, geologic material, surface soil permeability, topsoil type, depth of the solum, soil acidity, forest cover type, stand size class, stand age class, stand density class, and simple forest soil capability class. For this study, a FORTRAN IV program was written for input and output map data, and the computer statistics packages, SPSS and BMD, were used to perform the multivariate statistical analysis. Fourteen variables were analyzed to investigate the characteristics of their fire quench distribution and to estimate the correlation coefficients among them. Principal component analysis was executed to find the dimensions of forest land characteristics, and factor scores were used for proper samples of OTU throughout the study area. In order to develop the classes of forest land classification based on 102 surrogates, cluster and discriminant analyses of principal descriptor variable matrix were undertaken. Results obtained through a series of multivariate statistical analyses were as follows ; 1) Principal component analysis was proved to be a useful tool for data selection and identification of principal descriptor variables which represented the characteristics of forest land and facilitated the selection of samples.

  • PDF

Real Time AOA Estimation Using Analog Neural Network Model (아날로그 신경망 모델을 이용한 실시간 도래방향 추정 알고리즘의 개발)

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.465-469
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas, However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. the other problem of MUSIC and ESPRIT is to require calibrated antennas with uniform features, and are sensitive ti the manufacturing fault and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those methods require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected Hopfield neural model. Computer simulations show the validity of the proposed algorithm. It follows that the proposed method yields better AOA estimates than MUSIC. Moreover, out method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process (열확산처리 공정에 의한 순수 타이타늄의 표면특성 향상 연구)

  • Jeong, Hyeon-Gyeong;Lee, Dong-Geun;Yaskiv, O.;Lee, Yong-Tai;Hur, Bo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.692-698
    • /
    • 2011
  • The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to $100{\mu}m$. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

Validity and Reliability of a Korean Version of Yale Food Addiction Scale for Children (YFAS-C) (한국판 청소년용 음식중독도구의 타당도와 신뢰도)

  • Kim, Jung Ho;Song, Ji Hyun;Kim, Ran;Jang, Mi Young;Hong, Hyon Joo;Kim, Hyun Ji;Shin, Sung Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.1
    • /
    • pp.59-68
    • /
    • 2019
  • Purpose: This study evaluated the psychometric properties of the Korean version of Yale Food Addiction Scale for Children (YFAS-C). Methods: Participants were 419 young adolescent students (11~15 years old). The content validity of the expert group was calculated as the content validity index (CVI) after the translation and reverse translation process of the 25 items of the YFAS-C. The multitrait-multimethod matrix (MTMM) method was used to verify the construct validity; the generalized linear model (GLM) was used to evaluate the concurrent and incremental validity. Reliability was calculated as Kuder-Richardson-20 (KR-20) and Spearman-Brown coefficients. Results: The CVI of the 25 items was greater than the item-level CVI .80 and the scale-level CVI .90. The Korean version of YFAS-C had verified convergent validity in emotional eating and external eating and discriminant validity in restrained eating. In addition, it had verified concurrent validity in emotional eating and external eating. Finally the incremental validity of the Korean version of YFAS-C was statistically significant on BMI. Reliability was KR-20 ${\alpha}=.69$ and the Spearman-Brown coefficient was .64. Conclusion: The Korean version of YFAS-C is a valid and reliable scale for measuring the severity of food addiction; it can be a useful scale for preventing obesity by predicting food addiction early.

Medical Image Encryption based on C-MLCA and 1D CAT (C-MLCA와 1차원 CAT를 이용한 의료 영상 암호화)

  • Jeong, Hyun-Soo;Cho, Sung-Jin;Kim, Seok-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.439-446
    • /
    • 2019
  • In this paper, we propose a encryption method using C-MLCA and 1D CAT to secure medical image for efficiently. First, we generate a state transition matrix using a Wolfram rule and create a sequence of maximum length. By operating the complemented vector, it converts an existing sequence to a more complex sequence. Then, we multiply the two sequences by rows and columns to generate C-MLCA basis images of the original image size and go through a XOR operation. Finally, we will get the encrypted image to operate the 1D CAT basis function created by setting the gateway values and the image which is calculated by transform coefficients. By comparing the encrypted image with the original image, we evaluate to analyze the histogram and PSNR. Also, by analyzing NPCR and key space, we confirmed that the proposed encryption method has a high level of stability and security.

A Study on the Effects of Strategic Item Attributes on Strategic Partnership in Supplier Dominant Relationship-Focused on Shipbuilding Industry (구매자 열위, 공급자 우위 시장에서 전략품목의 속성이 전략적 동반자관계에 미치는 영향 - 조선업을 중심으로)

  • Yang, Han-Na;Kwak, Jae-Woong;Shin, Chang-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.259-268
    • /
    • 2022
  • Unlike the general buyer-supplier relationship, there are cases wherein the bargaining power of suppliers is greater than that of buyers. This relationship can be found especially in the shipbuilding industry. Thus, this paper focused on strategic items presented in Kraljic's study. The purpose of this study was to examine factors influencing buyers' purchase of strategic items in a market wherein the bargaining power of suppliers is superior. Results show that the path coefficient between environment factor and satisfaction factor was the highest. Additionally, the path coefficient between environment factor and reliability factor was the next highest. Also, as a result of analyzing if there is a difference in perception according to the superiority and inferiority of bargaining power perceived by buyers, significant results were found in some path coefficients.

A Study on the Captive Model Test of KCS in Regular Waves (KCS 선형의 규칙파 중 구속모형시험에 대한 연구)

  • Choi, Hujae;Kim, Dong Jin;Kim, Yeon Gyu;Yeo, Dong Jin;Yun, Kunhang;Lee, Gyeongjung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.296-305
    • /
    • 2022
  • In order to investigate maneuvering characteristics of KCS in waves, captive model test in regular waves was conducted. Purpose of the test is measuring maneuvering hull forces when ship is maneuvering in waves. Model test was carried out using CPMC (Computerized Planar Motion Carriage) of ocean engineering basin in KRISO (Korea Research Institute of Ships and Ocean engineering). Total 6 degrees-of-freedom motion were fixed by two points supporting captive model test device, which is specially designed for this test. This system estimates 6 degrees-of-freedom forces and moments through 12 strain gauge signals. Mapping matrix from strain gauge signals to 6 degrees-of-freedom forces and moments was derived by a well-organized calibration test. Static drift test was conducted in calm sea and in regular waves with various wave conditions. Hydrodynamic coefficients related to drift angle were extracted for each wave conditions, and the effect of waves on course stability was analyzed.