• Title/Summary/Keyword: Matrix analysis

Search Result 5,841, Processing Time 0.046 seconds

In Vitro Intrinsic Radiosensitivity Of Human Squamous Cell Carcinoma in Primary Culture (인체 상피 세포암의 일차 배양을 이용한 방사선 민감도 측정)

  • Choi Eun Kyung;Yang Kwang Mo;Yi Byong Yong;Chang Hyesook;Kim Sang-Yoon;Nam Joo-Hyun;Yu Eunsil;Lee Inchul
    • Radiation Oncology Journal
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 1994
  • There are a number of reports suggesting that there may be a correlation between the clinical response to radiotherapy in various tumors and the clonogenic survival of cell lines derived from these tumors following exposure to 2 Gy(SF2). Authors conducted this study to determine SF2 for cells in primary culture from surgical specimens. The tumor tissues with squamous cell carcinoma of uterine cervix and head and neck were obtained. The tumor tissues were disaggregated to single cells by incubating with collagenase type w for 2 hours with constant stirring. Single cell suspensions were inoculated in four 24-well plates precoated with cell adhesive matrix. After 24 hours of incubation at 37$ ^{\circ}C $, rows of four wells were then irradiated, consisting of control set and five other sets each receiving doses of 1,2,3,4, and 6 Gy. After incubation for a total of 13 days, the cultures were stained with crystal violet and survival at each dose was determined by quantitative image analysis system, To determine whether cell growth was of epithelial origin, immunocytochemical staining with a mixture of cytokeratin and epithelial monoclonal antibodies were performed on cell cultures. During the period of this study, we received 5 squamous cell carcinoma specimens of head and neck and 20 of uterine cervical carcinoma. Of these, 15 yielded enough cells for radiosensitivity testing. This resulted an overall success rate of 60$ \% $. The mean SF2 value for 15 tumours was 0.55$\pm$0.17 ranging from 0.20 to 0.79. These results indicate that there is a broad range of sensitivities to radiation in same histologic type. So with a large patient population, we plan to determine whether a different SF2 value is associated with tumours that are controlled with radiotherapy than those that are not.

  • PDF

Characterizing Responses of Biological Trait and Functional Diversity of Benthic Macroinvertebrates to Environmental Variables to Develop Aquatic Ecosystem Health Assessment Index (환경변이에 대한 저서성 대형무척추동물의 생물학적 형질과 기능적 다양성 분석: 수생태계 건강성 평가 관점에서)

  • Moon, Mi Young;Ji, Chang Woo;Lee, Dae-Seong;Lee, Da-Yeong;Hwang, Soon-Jin;Noh, Seong-Yu;Kwak, Ihn-Sil;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The biological indices based on the community structure with species richness and/or abundance are commonly used to assess aquatic ecosystem health. Meanwhile, recently functional traits-based approach is considered in ecosystem health assessment to reflect ecosystem functioning. In this study, we developed a database of biological traits for 136 taxa consisting of major stream insects (Ephemeroptera, Plecoptera, Trichoptera, Coleoptera, and Odonata) collected at Korean streams on the nationwide scale. In addition, we obtained environmental variables in five categories (geography, climate, land use, hydrology and physicochemistry) measured at each sampling site. We evaluated the relationships between community indices based on taxonomic diversity and functional diversity estimated from biological traits. We classified sampling sites based on similarities of their environmental variables and evaluated relations between clusters of sampling sites and diversity indices and biological traits. Our results showed that functional diversity was highly correlated with Shannon diversity index and species richness. The six clusters of sampling sites defined by a hierarchical cluster analysis reflected differences of their environmental variables. Samples in cluster 1 were mostly from high altitude areas, whereas samples in cluster 6 were from lowland areas. Non-metric multidimensional scaling (NMDS) displayed similar patterns with cluster analysis and presented variation of taxonomic diversity and functional diversity. Based on NMDS and community-weighted mean trait value matrix, species in clusters 1-3 displayed the resistance strategy in the life history strategy to the environmental variables whereas species in clusters 4-6 presented the resilience strategy. These results suggest that functional diversity can complement the biological monitoring assessment based on taxonomic diversity and can be used as biological monitoring assessment tool reflecting changes of ecosystem functioning responding to environmental changes.

Comparison Analysis of Aromatic Compounds in the Aromatic Rice Germplasm by Gas Chromatography and Mass Spectrometry (Gas Chromatography-Mass Spectrometry에 의한 향미 유전자원의 방향성 화합물 비교분석)

  • Kim, Jeong-Soon;Cho, Jum-Rae;Gwag, Jae-Gyun;Kim, Tae-San;Ahn, Sang-Nag;Lee, Sok-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.88-103
    • /
    • 2009
  • The volatile and semi-volatile compounds of 5 accessions of domestic scented and 25 accessions of introduced scented were extracted by solid phase microextraction (SPME) and analyzed by gas chromatographymass spectrum (GC-MS). A total of 156 volatile and semivolatile compounds were identified from 30 accessions of aromatic rice, including 32 alcohols, 25 acids, 25 ketones, 21 hydrocarbon, 18 esters, 16 aldehydes, 4 ethers, 5 amines, 2 phenols, 2 bases, and 8 miscellaneous compounds. By UPGMA/Neighbor-join tree analysis, the thirty accessions of aromatic rice could be classified into seven groups according to the major odor or aroma compounds. Group I included indica type of Basmati varieties. Group II and Group IV included japonica type introduced scented. Group III consisted only Hyangmibyeo1ho in domestic scented. Group V and Group VII included indica type of Basmati and non-Basmati varities. Group VI included four of domestic scented of seven accessions excepted Basmati6129, Basmati 6311, and Seratus Malam.

Closed Integral Form Expansion for the Highly Efficient Analysis of Fiber Raman Amplifier (라만증폭기의 효율적인 성능분석을 위한 라만방정식의 적분형 전개와 수치해석 알고리즘)

  • Choi, Lark-Kwon;Park, Jae-Hyoung;Kim, Pil-Han;Park, Jong-Han;Park, Nam-Kyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • The fiber Raman amplifier(FRA) is a distinctly advantageous technology. Due to its wider, flexible gain bandwidth, and intrinsically lower noise characteristics, FRA has become an indispensable technology of today. Various FRA modeling methods, with different levels of convergence speed and accuracy, have been proposed in order to gain valuable insights for the FRA dynamics and optimum design before real implementation. Still, all these approaches share the common platform of coupled ordinary differential equations(ODE) for the Raman equation set that must be solved along the long length of fiber propagation axis. The ODE platform has classically set the bar for achievable convergence speed, resulting exhaustive calculation efforts. In this work, we propose an alternative, highly efficient framework for FRA analysis. In treating the Raman gain as the perturbation factor in an adiabatic process, we achieved implementation of the algorithm by deriving a recursive relation for the integrals of power inside fiber with the effective length and by constructing a matrix formalism for the solution of the given FRA problem. Finally, by adiabatically turning on the Raman process in the fiber as increasing the order of iterations, the FRA solution can be obtained along the iteration axis for the whole length of fiber rather than along the fiber propagation axis, enabling faster convergence speed, at the equivalent accuracy achievable with the methods based on coupled ODEs. Performance comparison in all co-, counter-, bi-directionally pumped multi-channel FRA shows more than 102 times faster with the convergence speed of the Average power method at the same level of accuracy(relative deviation < 0.03dB).

Structural analysis of Precipitates in a Nickel based Cast Single Crystal of CMSX 6 (니켈계 초합금 CMSX 6 단결정 주조조직의 석출물구조 분석)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Kim, Su-Cheol;Im, Ok-Dong;Kim, Seung-Ho;Jin, Yeong-Hun;Choe, Jong-Su;Lee, Jae-Hun;Lee, Sang-Jun;Seo, Dong-Lee;Lee, Tae-Hun;Heo, Mu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1165-1169
    • /
    • 1998
  • A single crystal cast blade was manufactured by CMSX 6, one of the first generarion nickel based single crystal superalloys by the selector method in a vacuum furnace. The single crystal has been grown with cooling rate of 2.5 mm/min, after pouring the molten alloy of 163$0^{\circ}C$ to the mold heated to 150$0^{\circ}C$. The cast structure could be classified into matrix (dendrite) and eutectic regions in ${\gamma}$'shape and size. The eutectic region showed higher Ti content. As the additional results of ${\gamma}$'precipitates by EPMA and CBED analysis the ${\gamma}$'size was less than 0.5~0.7$\mu\textrm{m}$, showing the chemical composition close to Ni$_3$Al of Ll$_2$ lattice structure. But ${\gamma}$'size has increased to bigger than 1.0$\mu\textrm{m}$, being near to eutectic region, changing its shape to bar or huge block types. These showed the chemical structure near to Ni$_3$Ti of D $O_{24}$ lattice structure. Therefore, ${\gamma}$'morphology of dendrite and eutectic regions depends absolutely on its chemical composition and lattice structure.

  • PDF

Study on Analysis of the Proper Ratio and the Effects of Low Impact Development Application to Sewage Treatment District (하수처리구역 내 LID 적용에 대한 적정비율 및 효과분석 연구)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1193-1207
    • /
    • 2013
  • Increase of impervious area caused by overdevelopment has led to increase of runoff and then the problem of flooding and NPS were brought up. In addition, as decrease of base flow made groundwater level to decline, a stream that dries up is issued. low impact development (LID) method which is possible to mimic hydrological water cycle, minimize the effect of development, and improve water cycle structure is proposed as an alternative. As introduction of LID in domestic increases, the study on small watershed is in process mainly. Also, analysis of property of hydrological runoff and load on midsize watershed, like sewage treatment district, is required, the study on it is still insufficient. So, area applying LID practices from watershed of Dongrae stream is pinpointed and made the ratio and then expand it to watershed of Oncheon stream. Among low impact development practices, Green Roof, Porous Pavement, and Bio- retention are selected for the application considering domestic situations and simulated with SWMM-LID model of each watershed and improvement of water cycle and reduction of non-point pollution loads was analysed. Improvement of water cycle and reduction of non-point pollution loads were analyzed including the property of rainfall and soil over long term simulation. The model was executed according to scenario based on combination of LID as changing conductivity in accordance with soil type of the watershed. Also, this study evaluated area of LID application that meets the efficiency of conventional management as a criteria for area of LID practices applying to sewer treatment district by comparing the efficiency of LID application with that of conventional method.

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.

Effects of specimens dimension on the flexural properties and testing reliability of dental composite resin (치과용 복합레진의 굽힘 특성과 시험 신뢰도에 미치는 시편 크기의 영향)

  • Im, Yong-Woon;Hwang, Seong-sig;Kim, Sa-hak;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.273-280
    • /
    • 2017
  • The aim of the present study was to investigate the effects of specimen dimension on the flexural properties and testing reliability of dental composite resin. The composite resin was prepared experimentally by mixing a resin matrix with silanated micrometer glass filler at 50 vol%. Flexural specimens with various dimension in specimen's width were fabricated by light curing using a split metal mold; $25{\times}2{\times}2mm$, $25{\times}2{\times}4mm$, $25{\times}2{\times}6mm$ in length ${\times}$ height ${\times}$ width. The flexural strength and modulus were determined according to ISO 4049 test protocol at a span length of 20 mm (normal-flexural strength; NFS). Another flexural test was conducted using mini-sized specimens ($12{\times}2{\times}2mm$, $12{\times}2{\times}4mm$, $12{\times}2{\times}6mm$) from the broken specimens at a span length of 10 mm (mini-flexural strength; MFS). Data were analyzed with ANOVA and Duncan's post-hoc test and the test reliability was evaluated by Weibull analysis. Results showed that there are generally no significant difference in flexural strength with the increase in the specimen width in NFS and MFS tests. However, the test reliability of flexural strength based on Weibull analysis was largely changed with the variables in the dimension of width and span length. The flexural modulus of NFS was increased as the dimension of specimens width increased while there was no trend in flexural modulus of MFS test. Overall results recommend that the evaluation of flexural properties and the reliability of dental composite resins should be performed with more than one test method.

Improvement of analytical method for pymetrozine in citrus fruits (감귤류 과일의 피메트로진 정량을 위한 분석법 개선)

  • Jeon, Jun-Ho;Chun, Su-Hyun;Kim, Min-Hyuk;Kim, Mi-Ok;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • It is difficult to analyze pymetrozine in citrus fruits using the hydromatrix method because of its low efficiency of purification and overlap of matrix and pymetrozine peaks. Liquid-liquid extraction can analyze pymetrozine in citrus fruits using dichloromethane. Since low pH interferes with the extraction of pymetrozine, the extracts of citrus fruits were maintained over pH 7.0 by adding borax buffer and 1 N NaOH in the improved method. According to the improved method, citrus fruits (such as lemon, lime, orange, tangerine, and grapefruit) were extracted and purified for HPLC-photo diode array analysis. The results of validation were as follows: $4.360{\mu}g/kg$ of limit of detection, $14.533{\mu}g/kg$ of limit of quantitation, and 0.007 mg/kg of method quantitative limit. Citrus fruits spiked with pymetrozine showed a recovery range from 71.8 to 83.7% and a coefficient of variation below 6%. Thus, the improved method can efficiently analyze pymetrozine in citrus fruits.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.