• Title/Summary/Keyword: Matrix Realization

Search Result 77, Processing Time 0.028 seconds

Simulation of Extremely Low Cycle Fatigue Fracture in Ductile Cast Iron (구상흑연주철 극저사이클 피로파괴의 시뮬레이션 구현)

  • Kim, Min-Gun;Lim, Bok-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1573-1580
    • /
    • 2006
  • In this study, fatigue tests were carried out under push-pull loading condition using spheroidal graphite cast iron in order to clarify the internal fatigue fracture mechanism in an extremely low cycle fatigue regime. It is found that a successive observation of internal fatigue damage it is found that the fracture processes go through three stages, that is, the generation, growth and coalescence of microvoids originated from debonding of graphite-matrix interface. It is also found that the crack which is initiated from the void propagates by coalescence of neighboring cracks and the fatigue crack growth rate can be expressed in form of the Manson-Coffin rule type. In this paper, quantitative analyses of fatigue properties for realization of simulation about fatigue life evaluation are also presented.

A Position Control for a Parallel Stage with 6 degrees of freedom Using Magnetic Actuators (전자기 구동장치를 이용한 병렬형 6자유도 스테이지의 위치제어)

  • Lee Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we address a position control for a parallel stage, which is levitated and driven by electric magnetic force. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal force. A dynamic equation of the stage system is derived based on Newton-Euler method and it's special Jacobian matrix describing a relation between the limited velocity and Cartesian velocity is done. There are proposed two control methods for positioning which are Cartesian space controller and Actuator space controller. The control performance of the Cartesian space controller is better than the Actuator space controller in task space trajectory while the Actuator space controller is simpler than the Cartesian space controller in controller realization.

A Study on the Implementation of Hopfield Model using Array Processor (어레이 프로세서를 이용한 홉필드 모델의 구현에 관한 연구)

  • 홍봉화;이지영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.94-100
    • /
    • 1999
  • This paper concerns the implementation of a digital neural network which performs the high speed operation of Hopfield model's arithmetic operation. It is also designed to use a look-up table and produce floating point arithmetic of nonlinear function with high speed operation. The arithmetic processing of Hopfleld is able to describe the matrix-vector operation, which is adaptable to design the array processor because of its recursive and iterative operation .The proposed method is expected to be applied to the field of real neural networks because of the realization of the current VLSI techniques.

  • PDF

A Study on Optimal Synthesis of Multiple-Valued Logic Circuits using Universal Logic Modules U$_{f}$ based on Reed-Muller Expansions (Reed-Muller 전개식에 의한 범용 논리 모듈 U$_{f}$ 의 다치 논리 회로의 최적 합성에 관한 연구)

  • 최재석;한영환;성현경
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.43-53
    • /
    • 1997
  • In this paper, the optimal synthesis algorithm of multiple-valued logic circuits using universal logic modules (ULM) U$_{f}$ based on 3-variable ternary reed-muller expansions is presented. We check the degree of each varable for the coefficients of reed-muller expansions and determine the order of optimal control input variables that minimize the number of ULM U$_{f}$ modules. The order of optimal control input variables is utilized the realization of multiple-valued logic circuits to be constructed by ULM U$_{f}$ modules based on reed-muller expansions using the circuit cost matrix. This algorithm is performed only unit time in order to search for the optimal control input variables. Also, this algorithm is able to be programmed by computer and the run time on programming is O(p$^{n}$ ).

  • PDF

Room-temperature Magnetotransport in Degenerately Doped GaAs:(Mn,Be) by Virtue of the Embedded Ferromagnetic Clusters

  • Yu, Fu-Cheng;Kim, Do-Jin;Kim, Hyo-Jin;Ihm, Young-Eon
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.103-107
    • /
    • 2005
  • Magnetotransport is a prerequisite to realization of electronic operation of spintronic devices and it would be more useful if realized at room temperature. The effects of Be codoping on GaMnAs on magnetotransport were investigated. Mn flux was varied for growth of precipitated GaMnAs layers under a Be flux for degenerate doping via low-temperature molecular beam epitaxy. Magnetotransport as well as ferromagnetism at room temperature were realized in the precipitated GaAs:(Mn,Be) layers. Codoping of Be was shown to promote formation of MnGa clusters, and annealing process further stabilized the cluster phases. The room-temperature magnetic properties of the layers originate from the ferromagnetic clusters of MnGa and MnAs embedded in GaAs. The degenerately doped metallic GaAs matrix allowed the visualization of the magnetotransport through anomalous Hall effect.

Laser crystallization in active-matrix display backplane manufacturing

  • Turk, Brandon A.;Herbst, Ludolf;Simon, Frank;Fechner, Burkhard;Paetzel, Rainer
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1261-1262
    • /
    • 2008
  • Laser-based crystallization techniques are ideally-suited for forming high-quality crystalline Si films on active-matrix display backplanes, because the highly-localized energy deposition allows for transformation of the as-deposited a-Si without damaging high-temperature-intolerant glass and plastic substrates. However, certain significant and non-trivial attributes must be satisfied for a particular method and implementation to be considered manufacturing-worthy. The crystallization process step must yield a Si microstructure that permits fabrication of thin-film transistors with sufficient uniformity and performance for the intended application and, the realization and implementation of the method must meet specific requirements of viability, robustness and economy in order to be accepted in mass production environments. In recent years, Low Temperature Polycrystalline Silicon (LTPS) has demonstrated its advantages through successful implementation in the application spaces that include highly-integrated active-matrix liquid-crystal displays (AMLCDs), cost competitive AMLCDs, and most recently, active-matrix organic light-emitting diode displays (AMOLEDs). In the mobile display market segment, LTPS continues to gain market share, as consumers demand mobile devices with higher display performance, longer battery life and reduced form factor. LTPS-based mobile displays have clearly demonstrated significant advantages in this regard. While the benefits of LTPS for mobile phones are well recognized, other mobile electronic applications such as portable multimedia players, tablet computers, ultra-mobile personal computers and notebook computers also stand to benefit from the performance and potential cost advantages offered by LTPS. Recently, significant efforts have been made to enable robust and cost-effective LTPS backplane manufacturing for AMOLED displays. The majority of the technical focus has been placed on ensuring the formation of extremely uniform poly-Si films. Although current commercially available AMOLED displays are aimed primarily at mobile applications, it is expected that continued development of the technology will soon lead to larger display sizes. Since LTPS backplanes are essentially required for AMOLED displays, LTPS manufacturing technology must be ready to scale the high degree of uniformity beyond the small and medium displays sizes. It is imperative for the manufacturers of LTPS crystallization equipment to ensure that the widespread adoption of the technology is not hindered by limitations of performance, uniformity or display size. In our presentation, we plan to present the state of the art in light sources and beam delivery systems used in high-volume manufacturing laser crystallization equipment. We will show that excimer-laser-based crystallization technologies are currently meeting the stringent requirements of AMOLED display fabrication, and are well positioned to meet the future demands for manufacturing these displays as well.

  • PDF

Realization of Infrared Thermograph System (적외선 체열촬영시스템의 구현)

  • 이수열;우응제;조민형
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.13-24
    • /
    • 1994
  • In the conventional thermograph systems, expensive infrared lens systems are usually used for accomodating infrared beams to high speed optical scanners. In this study, a cheap focussing mirror with a two dimensional scanner are used for the development of medical infrared thermograph system in which high speed imaging is not critically required. The infrared thermograph system can be used for two dimensional imaging of human skin temperature by measuring the amount of infrared lights radiating from it. It has been experimentally proven that the accuracy of temperature measurements using the developed system is under 0.1$^{\circ}C$ with image matrix size of 256${\times}$240, and imaging time of 4 seconds.

  • PDF

An Analysis and Evaluation of the Effectiveness of Decision Making During the Review of Scientifically Constructed Project Proposals

  • Abdykerova, G.Zh;Bukayeva, A.D.
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.3 no.2
    • /
    • pp.31-44
    • /
    • 2008
  • A selection technique for innovative projects on the beginning stage has been presented in this article. It can be applied in projects assessment in HEI, enterprises, development institutes, etc. It is rather difficult to assess the project quality on the beginning stage of R&D due to the uncertainty in the technical and economic indices but the new development analysis on this stage is of a great interest. By innovative project quality as a management object we will mean those characteristics relating to the results capacity of the projects and its realization process to satisfy the requirements to the innovative products competitiveness and their innovative attractiveness for investors. The most important question in the innovative projects management is the determination of its quality level under modern conditions. The aim of the research is to analyze and evaluate the decision making during the project management process. The objectives and hypotheses are assessment of an innovative project with the application of McKinsey's model is better to realizes by 3 stages: a) selection of optimal criteria; b) determination of weighing coefficients; c) projects positioning in a matrix.

  • PDF

2.22-inch qVGA ${\alpha}$-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, J.B.;Park, S.;Heo, S.K.;You, C.K.;Min, H.K.;Kim, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1649-1652
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (${\alpha}$- Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated because the 2.5 um fine pattern formation technique is combined with high thermal photo-resist (PR) development. In addition, a novel concept of unique ${\alpha}$-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um finepatterning is a considerably significant technology to obtain higher aperture ratio for higher resolution ${\alpha}$-Si TFT-LCD panel realization.

  • PDF

Extraction of Different Types of Geometrical Features from Raw Sensor Data of Two-dimensional LRF (2차원 LRF의 Raw Sensor Data로부터 추출된 다른 타입의 기하학적 특징)

  • Yan, Rui-Jun;Wu, Jing;Yuan, Chao;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.265-275
    • /
    • 2015
  • This paper describes extraction methods of five different types of geometrical features (line, arc, corner, polynomial curve, NURBS curve) from the obtained raw data by using a two-dimensional laser range finder (LRF). Natural features with their covariance matrices play a key role in the realization of feature-based simultaneous localization and mapping (SLAM), which can be used to represent the environment and correct the pose of mobile robot. The covariance matrices of these geometrical features are derived in detail based on the raw sensor data and the uncertainty of LRF. Several comparison are made and discussed to highlight the advantages and drawbacks of each type of geometrical feature. Finally, the extracted features from raw sensor data obtained by using a LRF in an indoor environment are used to validate the proposed extraction methods.