Browse > Article
http://dx.doi.org/10.4283/JMAG.2005.10.3.103

Room-temperature Magnetotransport in Degenerately Doped GaAs:(Mn,Be) by Virtue of the Embedded Ferromagnetic Clusters  

Yu, Fu-Cheng (Department of Materials Science and Engineering, Chungnam National University)
Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University)
Ihm, Young-Eon (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Abstract
Magnetotransport is a prerequisite to realization of electronic operation of spintronic devices and it would be more useful if realized at room temperature. The effects of Be codoping on GaMnAs on magnetotransport were investigated. Mn flux was varied for growth of precipitated GaMnAs layers under a Be flux for degenerate doping via low-temperature molecular beam epitaxy. Magnetotransport as well as ferromagnetism at room temperature were realized in the precipitated GaAs:(Mn,Be) layers. Codoping of Be was shown to promote formation of MnGa clusters, and annealing process further stabilized the cluster phases. The room-temperature magnetic properties of the layers originate from the ferromagnetic clusters of MnGa and MnAs embedded in GaAs. The degenerately doped metallic GaAs matrix allowed the visualization of the magnetotransport through anomalous Hall effect.
Keywords
GaMnAsBe codoping; Cluster;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Shen, F. Matsukura, S. P. Guo, Y. Sugawara, H. Ohno, M. Tani, H. Abe, and H. C. Liu, J. Crystal Growth 201/202, 679 (1999)
2 H. Ohno, J. Mag. Mag. Mater. 200, 110 (1999)
3 T. Hayashi, M. Tanaka, T. Nishinaga, H. Shimada, H. Tsuchiya, and Y. Otuka, J. Crystal Growth 175/176, 1063 (1997)
4 H. Shimizu, T. Hayashi, T. Nishinaga, and M. Tanaka, Appl. Phys. Lett. 74, 398 (1999)
5 A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A.S. van Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B56, 13103 (1997)
6 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000)
7 S. U. Yuldashev, H. Im, V. S. Yalishev, C. S. Park, T. W. Kang, S. Lee, Y. Sasaki, X. Liu, and J. K. Furdyna, Appl. Phys. Lett. 82, 1206 (2003)
8 K. M. Yu, W. Walukiewicz, T. Wojtowicz, W. L. Lim, X. Liu, M. Dobrowolska, and J. K. Furdyna, Nucl. Instrum. Methods Phys. Res. B219-220, 636 (2004)
9 K. H. Kim, K. J. Lee, D. J. Kim, H. J. Kim, Y. E. Ihm, D. Djayaprawira, M. Takahashi, C. S. Kim, C. G. Kim, and S. H. Yoo, Appl. Phys. Lett. 82, 1775 (2003)
10 K. H. Kim, K. J. Lee, D. J. Kim, H. J. Kim, Y. E. Ihm, C. G. Kim, S. H. Yoo, and C. S. Kim, Appl. Phys. Lett. 82, 4755 (2003)
11 A. Shen, Y. Horikoshi, H. Ohno, and S. P. Guo, Appl. Phys. Lett. 71, 1540 (1997)
12 H. Ohno, Science 281, 951 (1998)   DOI   ScienceOn
13 K. H. Kim, K. J. Lee, D. J. Kim, C. S. Kim, H. C. Lee, C. G. Kim, S. H. Yoo, H. J. Kim, and Y. E. Ihm, J. Appl. Phys. 93, 6793 (2003)
14 K. H. Kim, J. H. Park, B. D. Kim, C. S. Kim, D. J. Kim, H. J. Kim, and Y. E. Ihm, Metal. Mater. 8, 177 (2002)
15 AShen, H. Ohno, F. Matsukara, Y. Sugawara, N. Akiba, T. Koroiwa, A. Oiwa, A Ando, S. Katsumoto, and Y. lye, J. Crystal Growth 175/176, 1069 (1997)
16 M. Tanaka, J. P. Harbison, J. DeBoeck, T. Sands, B. Philips, T. L. Cheeks, and V. G. Keramidas, Appl. Phys. Lett. 62, 1565 (1993)
17 B. D. Cullity in 'Introduction to magnetic materials', pp. 119, Addison-Wesley, 1972
18 H. Ohno, F. Matsukura, A. Shen, Y. Sugawara, N. Akiba, and T. Kuroiwa, Physica E2, 904 (1998)
19 P. Specht, M. J. Cich, R. Zhao, J. Gebauer, M. Luysberg, and E. R. Weber, Physica B308-310, 808 (2001)
20 Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999)
21 J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van Hoof, and G. Borghs, Appl. Phys. Lett. 68, 2744 (1996)