A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.
Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.
In this paper, an efficient and accurate formulation for the transient analysis of constrained multibody systems is presented. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix: it can improve the efficiency of the formulation. Furthermore, the formulation partitions the coefficient matrix of linear and nonlinear equations into several sub-matrices using kinematic uncoupling. This can solve the equations more efficiently. The proposed formulation can be used to perform dynamic analysis of systems which can be partitioned into several sub-systems such as train systems. One numerical example is given to demonstrate the efficiency and accuracy of the formulation, and another numerical example is given to show its application to the train systems.
A static linear programming formulation for minimum weight design of frames that is based on a matrix displacement method is presented in this paper. According to elementary theory of plasticity, minimum weight design of frames can be carried out by using only the equilibrium equations, because the system is statically determinate when at an incipient collapse state. In the present formulation, a statically determinate released frame is defined by introducing hinges into the real frame and the bending moments in yield constraints are expressed in terms of unit hinge rotations and the external loads respectively, by utilizing the matrix displacement method. Conventional Simplex algorithm with some modifications is utilized for the solution of linear programming problem. As the formulation is based on matrix displacement method, it may be easily adopted to the weight optimization of frames with displacement and deformation limitations. Four illustrative examples are also given for comparing the results to those obtained in previous studies.
Journal of Korean Society of Industrial and Systems Engineering
/
v.16
no.27
/
pp.83-89
/
1993
In order to model the Group Technology Problem three formulations are used, that is, generally the following formulations are used: (1) Matrix formulation, (2) Mathematical programming formulation, (3) Graph formulation. In the case of Matrix formulation, it is difficult to discribe the situation using the multi-job machine. But this paper proposed the model of Group Technology using the multi-job machin, taking the method of making practical application of principle of similarity coefficient.
The conventional segregated finite element formulation produces a small and simple matrix at each step than in an integrated formulation. And the memory and cost requirements of computations are significantly reduced because the pressure equation for the mass conservation of the Navier-Stokes equations is constructed only once if the mesh is fixed. However, segregated finite element formulation solves Poisson equation of elliptic type so that it always needs a pressure boundary condition along a boundary even when physical information on pressure is not provided. On the other hand, the conventional integrated finite element formulation in which the governing equations are simultaneously treated has an advantage over a segregated formulation in the sense that it can give a more robust convergence behavior because all variables are implicitly combined. Further it needs a very small number of iterations to achieve convergence. However, the saddle-paint-type matrix (SPTM) in the integrated formulation is assembled and preconditioned every time step, so that it needs a large memory and computing time. Therefore, we newly proposed the P2PI semi-segregation formulation. In order to utilize the fact that the pressure equation is assembled and preconditioned only once in the segregated finite element formulation, a fixed symmetric SPTM has been obtained for the continuity constraint of the present semi-segregation finite element formulation. The momentum equation in the semi-segregation finite element formulation will be separated from the continuity equation so that the saddle-point-type matrix is assembled and preconditioned only once during the whole computation as long as the mesh does not change. For a comparison of the CPU time, accuracy and condition number between the two methods, they have been applied to the well-known benchmark problem. It is shown that the newly proposed semi-segregation finite element formulation performs better than the conventional integrated finite element formulation in terms of the computation time.
Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul;Ham, Seung-Ho
Korean Journal of Computational Design and Engineering
/
v.15
no.6
/
pp.411-417
/
2010
In this paper, the boom of a floating crane is modeled as a 3-dimensional elastic beam in order to analyze the dynamic response of the crane and its cargo. The boom is divided into more than two elements based on finite element formulation, and deformation of each element is expressed in terms of shape matrix and nodal coordinates. The equations of motion for the elastic boom consist of a mass matrix, a stiffness matrix, and a quadratic velocity vector that contains the gyroscopic and Coriolis forces. The size and complicity of the matrices increase in proportion with the number of elements. Therefore, it is not possible to derive the equations of motion explicitly for different number of elements. To overcome this difficulty, matrices for one 3-dimensional element are expressed with elementary sub-matrices. In particular, the quadratic velocity vector is derived as a product of a shape matrix and a 3-dimensional rotation matrix. By using the derived matrices, the equations of motion for the multi-element boom are automatically constructed. To verify the implementation of the elastic boom based on finite element formulation, we simulated a simple vibration of the elastic boom and compared the average deformation with the analytic solution. Finally, heave motion of the floating crane and surge motion of the cargo are presented as application examples of the elastic boom.
In this paper, an efficient and accurate formulation for the transient analysis of constrained multibody systems is presented. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix: it can improve the efficiency of the formulation. Furthermore, the formulation partitions the coefficient matrix of linear and nonlinear equations into several sub-matrices using kinematic uncoupling. This can solve the equations more efficiently. The proposed formulation can be used to perform dynamic analysis of systems which can he partitioned into several sub-systems such as train systems. One numerical example is given to demonstrate the efficiency and accuracy of the formulation, and another numerical example is given to show its application to the train systems.
Matrix tablets of nifedipine (NP) were prepared with Eudragit, diluent (lactose or Ca. phosphate) and Mg. stearate employing two different preparation methods (wet granulation and direct compression) to develop its sustained-release dosage forms. The effects of various formulation factors on the dissolution rate of the drug were investigated. Dissolution test was studied in pH 6.8 phosphate buffer containing 1% sodium lauryl sulfate using the paddle method. Formulation factors were the type and content of Eudragit, the type of diluent and the tablet preparation method. The optimum formula of NP matrix tablet, which resulted in a similar dissolution profile to that from Adalat Oros used as a reference, was 30 mg NP, 10% Eudragit RS, 2% Mg. stearate and an adequate quantity of lactose to yield 500 mg weight using the wet granulation method.
The captopril matrix tablets composed of polyethylene oxide(PEO) was prepared and administered to beagle dogs. Captopril matrix tablets were prepared using direct compressed method and wet granulation compressed method with various ratios of drug to PEO. The diffusion rate of captopril matrix tablets followed on the Higuchi's diffusion model. With increasing hardness of captopril matrix tablets, release rate was decreased. Each formulation was evaluated by the area under the curve (AUC) and time course of plasma captopril concentration after oral administration to beagle dogs. The $AUC_{0-12}$ were $9.126\;{\mu}g\;h/ml$ and $6.417\;{\mu}g\;h/ml$ for the matrix tablets and conventional tablets, respectively. Therefore, the bioavailability of captopril matrix tablets was greater than that of commercial product. It is suggested that captopril matrix tablets using PEO is a useful sustained release formulation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.