• Title/Summary/Keyword: Matrix Equation

Search Result 1,081, Processing Time 0.021 seconds

Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This work focused on the novel numerical tool for the bending responses of carbon nanotube reinforced composites (CNTRC) beams. The higher order shear deformation beam theory (HSDT) is used to determine strain-displacement relationships. A new exponential function was introduced into the carbon nanotube (CNT) volume fraction equation to show the effect of the CNT distribution on the CNTRC beams through displacements and stresses. To determine the mechanical properties of CNTRCs, the rule of the mixture was employed by assuming that the single-walled carbon nanotubes (SWCNTs)are aligned and distributed in the matrix. The governing equations were derived by Hamilton's principle, and the mathematical models presented in this work are numerically provided to verify the accuracy of the present theory. The effects of aspect ratio (l/d), CNT volume fraction (Vcnt), and the order of exponent (n) on the displacement and stresses are presented and discussed in detail. Based on the analytical results. It turns out that the increase of the exponent degree (n) makes the X-beam stiffer and the exponential CNTs distribution plays an indispensable role to improve the mechanical properties of the CNTRC beams.

Development of the Vibration Analysis Program Applying the High-Performance Numerical Analysis Library (고성능 수치해석 라이브러리를 적용한 진동해석 프로그램 개발)

  • Ko, Dou-Hyun;Boo, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.201-209
    • /
    • 2021
  • In order to evaluate the vibrational characteristics of huge finite element models such as ships and offshore structures, it is essential to perform eigenvalue analysis and frequency response analysis. However, these analyzes necessitate excessive equipment and computation time, which require the development of a high-performance analysis program. In particular, a considerable computational analysis time is required when calculating the inverse matrix in a linear system of equations and analyzing the eigenvalue analysis. Therefore, it can be improved by applying the latest high-performance library. In this paper, the vibration analysis program that enables fast and accurate analysis was developed by applying 'PARDISO', a parallel linear system of equation calculation library, and 'ARPACK', a high-performance eigenvalue analysis library. To verify the accuracy and efficiency of proposed method, we compare ABAQUS with proposed program using numerical examples of marine engineering.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

Induced Charge Distribution Using Accelerated Uzawa Method (가속 Uzawa 방법을 이용한 유도전하계산법)

  • Kim, Jae-Hyun;Jo, Gwanghyun;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.191-197
    • /
    • 2021
  • To calculate the induced charge of atoms in molecular dynamics, linear equations for the induced charges need to be solved. As induced charges are determined at each time step, the process involves considerable computational costs. Hence, an efficient method for calculating the induced charge distribution is required when analyzing large systems. This paper introduces the Uzawa method for solving saddle point problems, which occur in linear systems, for the solution of the Lagrange equation with constraints. We apply the accelerated Uzawa algorithm, which reduces computational costs noticeably using the Schur complement and preconditioned conjugate gradient methods, in order to overcome the drawback of the Uzawa parameter, which affects the convergence speed, and increase the efficiency of the matrix operation. Numerical models of molecular dynamics in which two gold nanoparticles are placed under external electric fields reveal that the proposed method provides improved results in terms of both convergence and efficiency. The computational cost was reduced by approximately 1/10 compared to that for the Gaussian elimination method, and fast convergence of the conjugate gradient, as compared to the basic Uzawa method, was verified.

Design Optimization of Hydrated Liquid Crystalline Vesicles Containing a High Content of Ceramide Using DOE (실험 계획법을 적용한 세라마이드 고함량의 수화 액정형 베시클의 최적설계)

  • Shin, Juyeong;Jin, Byung-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.623-631
    • /
    • 2022
  • Using the design of experiment (DOE), factors affecting the particle size of hydrated liquid crystalline vesicles containing a high content of ceramide were analyzed and the mixture composition was optimized. Manufacturing temperature, amount of ethanol, and ultrasonic time were selected as the main variables affecting the droplet size of the vesicles, and the effect of these variables on the droplet size was examined through the signal to noise (S/N) ratios of Taguchi method and ANOVA analysis. In addition, mixture composition experiments of three lipid components constituting the vesicle membrane, hydrogenated phosphatidyl choline (HPC), cholesterol (Chol), and ceramide (Cer), were performed according to the simplex central design matrix of the mixture. Regression analysis was conducted with the experimental data to obtain a model equation, and the optimal mixing composition of the three lipid components to minimize the vesicle droplet size was determined as HPC (0.6), Chol (0.1), and Cer (0.3).

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

Study of the Effect of Nature Based Solutions of Green Hotel on Customers' Pro-environment Behavioral Intentions (친환경 호텔의 자연기반해법과 고객의 친환경 행동의도와의 관계에 대한 연구)

  • Tae Uk KIM;Sun Mi YUN
    • The Korean Journal of Franchise Management
    • /
    • v.14 no.2
    • /
    • pp.49-60
    • /
    • 2023
  • Purpose: NBS (Natural-based Solutions) characteristics as eco-friendly hotels were divided into eco-friendly indoor and outdoor to structurally verify the relationship between customers' perceived eco-friendly value, psychological well-being, customer satisfaction, and pro-environmental behavioral intention. Research design, data and methodology: This survey conducted responses to customers who had experience using eco-friendly hotels for the past two years. SPSS 22.0 and AMOS 22.0 statistical programs were used for the collected questionnaire data. First, frequency analysis and confirmatory factor analysis (CFA) were verified, and structural correlation between variables was verified by covariance matrix structural equation (CB-SEM). Result: First, NBS was found to have a significant positive (+) effect on perceived eco-friendly value and psychological well-being. Second, psychological well-being was found to have a significant positive (+) effect on customer satisfaction and eco-friendly behavioral intention. Finally, Hypothesis 3 was accepted as perceived eco-value showed a significant positive (+) effect on eco-friendly behavioral intention, but Hypothesis 2 was rejected because it did not have a significant effect on customer satisfaction. Conclusions: theoretical and practical implications for the impact of NBS as an eco-friendly hotel on customers' eco-friendly behavior can be provided, as well as basic evidence for establishing efficient management strategies for hotel companies.

Influence of Fluorine Doping on Hardness and Compressive Stress of the Diamond-Like Carbon Thin Film

  • Sayed Mohammad Adel Aghili;Raheleh Memarzadeh;Reza Bazargan Lari;Akbar Eshaghi
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.124-129
    • /
    • 2023
  • This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.

Optimization of Fluoride Adsorption on Bone Char with Response Surface Methodology (RSM) (반응표면분석법(RSM)을 이용한 골탄의 불소 흡착 조건 최적화)

  • Hwang, Jiyun;Rachana, Chhuon;Dsane, Victory FiiFi;Kim, Junyoung;Choi, Younggyun;Shin, Gwyam
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.82-90
    • /
    • 2019
  • The Box-Benhken Design (BBD) model of response surface methodology (RSM) was used to optimize fluoride adsorption conditions in water using a 350℃ thermally treated cow bone. Water temperature, pH, contact time, and initial fluoride concentration were selected as variables to be optimized. A second order reaction equation was obtained from a Box-Behnken Design DoE experimental matrix of 29 runs. R2 and p-value of the model were 0.9242 and <0.0001, respectively, indicating that the selected variables had a very substantial effect on the adsorption results. The optimized adsorption capacity of the thermally synthesized bone char was estimated to be 6.46 mgF/g at the water temperature of 39.68℃, pH 6.25, contact time of 88.81 minutes and an initial fluorine concentration of 14.64 mgF/L.