• Title/Summary/Keyword: Matric potential

Search Result 30, Processing Time 0.035 seconds

Construction and Operational Experiences of Engineered Barrier Test Facility for Near Surface Disposal of LILW (중.저준위 방사성폐기물의 천층처분을 위한 인공방벽 실증시험시설의 건설 및 운전 경험)

  • Jin-Beak Park;Se-Moon Park;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 2004
  • To validate the previous conceptual design of cover system, construction of the engineered barrier test facility is completed and the performance tests of the disposal cover system are conducted. The disposal test facility is composed of the multi-purpose working space, the six test cells and the disposal information space for the PR center. The dedicated detection system measures the water content, the temperature, the matric potential of each cover layer and the accumulated water volume of lateral drainage. Short-term experiments on the disposal cover layer using the artificial rainfall system are implemented. The sand drainage layer shows the satisfactory performance as intended in the design stage. The artificial rainfall does not affect the temperature of cover layers. It is investigated that high water infiltration of the artificial rainfall changes the matric potential in each cover layer. This facility is expected to increase the public information about the national radioactive waste disposal program and the effort for the safety of the planned disposal facility.

  • PDF

Comparison of Water Relations of Three Cultivated Pleurotus Species and Trichoderma Green Moulds

  • Lee, Hyang-Burm;Naresh Magan;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • The effect of ionic osmotic potential (Ψ$\pi$), and matric potential (Ψm) in the range of -0.2 to -4.0 Mpa on mycelial growth of three species of Pleurotus (P.florida, P.ostrenatus and P.safor-caju) were determined over a range of temperature (15-3$0^{\circ}C$) on a 2% malt extract agar medium and compared with the Ψ$\pi$ effect on growth of two strains of Trichoderma green mould. With the ionic solute KCl, optimun Ψ$\pi$for growth was -0.2 MPa for P.floreda and in the range of -0.2 to -0.5 MPa, with slight growth at -3.0 MPa and with nogrowth at -4.0 MPa. Of the species of Pleurotus, P.florida grew signigicantly slower than the other two species. Growt of the species of Pleurocus was significantly slower when water potential (Ψ$\omega$) was modified matrically with polyethylene glycol (PEG) 8000 then osmotically with KCl. They were also more sensitive to changes in Ψm than Ψ$\pi$The optimum Ψm of the Pleurotus was -0.5 Ψm, with no growth below -3.0 MPa. Of the species of Pleurotus, P.florida was most sensitive and P.sajor-caju was more tolerent to lowered Ψ$\pi$,but P.sajor-caju was most sensitive to lowered Ψm. The growth rate of the Trichoderma green mould strains was much faster than that observed for the Pleurotus spp. Optimum growth for bot strains of Trichoderma was in the range of -0.2 to -0.5 MPa. Strain CNU 503 was more tolerant to water stress than strain CNU 501. Both strains were able to grow up to 30% of optimum growth at -4.0 MPa at 25-3$0^{\circ}C$.

  • PDF

토양 침투특성을 고려한 수문학적 토양군 분류

  • 박승기;정재훈;김옥형
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.53-56
    • /
    • 2002
  • This study was carried out to investigate the characteristics of the field-saturated hydraulic conductivity( $K_{fs}$ ) and matric flux potential(ф$_{m}$) measured by the Guelph Permeameter at the Backokpo watershed in the Han river and at the Bangdong watershed in the Keum river. And the Alpha (a) value which is the ratio of $K_{fs}$ to ф$_{m}$ were determined and the a values along with the defined soil series could be utilized to classify the soil in the Korean watershed into the SCS hydrologic soil groups.ups.

  • PDF

Characteristics of water relations paramenters obtained from pressure-volume curves in pinus koraiensis needles (P-V 曲線法에 의한 잣나무葉에 水分 特性에 關한 硏究)

  • Han, Sang-Sup
    • The Korean Journal of Ecology
    • /
    • v.15 no.1
    • /
    • pp.47-58
    • /
    • 1992
  • This study is to investigate the change of the seasonal patterns of relative water relations parameters by the pressure-volume curves in pinus koraiensis needles. The osmotic potentials at full water saturated(Ψ0, sat) and at incipient plasmolysis(Ψ0, tlp) increased in growing season, while decreased in non-growing season. The maximum bulk modulus of elasticity(Emax), relative water content(RWCTLP), and relativefree water content(FWCtlp) at incipient plasmolysis in non-growing season were higher than these of growing season. The maximum pressure potential(Ψp, max) varied from 1.16 to 2.18MPa, torgor index(TI) varied from 3.1 to 4.7. The osmole number(Ns/dw) and symplastic water (Vo/DW) were variable seasonally. The maximum water content(Vt/DW) and apoplastic water(AW) were relatively high in early growing stage, and then decreased to needle aging. The pressure potential(Ψp) and water potential(Ψ) in winter needles were rapidly decreased with decreasing of relative water content. The matric potential occupied over 10 percent of water potential with less than-2.0 MPa.

  • PDF

Influence of Grass Cover on Water Use and Shoot Growth of Young 'Fuji'/M.26 Apple Trees at Three Soil Water Regimes in Double Pot Lysimeters (토양수분영역을 달리한 double pot-lysimeter에서 자라는 '후지'/M.26 사과나무의 수분이용과 신초 생장에 미치는 잔디피복의 영향)

  • Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.357-364
    • /
    • 1999
  • This study measures the influence of grass cover on water use and shoot growth of apple trees growing under different soil water regimes in temperate climate conditions and evaluates monthly crop coefficients of such conditions during four months of the growing season in 1995. To do so, double pot lysimeter experiments of 3-year-old Fuji' apple (Males domestica Borkh.) trees under a transparent rain shield were designed and installed. Trees were triplicate under three soil water regimes: (A) drip-irrigation at -50 kPa of soil matric potential (IR50). (B) drip-irrigation at -80 kPa of soil matric potential (IR80), and (C) constant shallow water table at 0.45 m below the soil surface (WT45). In each treatment, two soil surface conditions were tested: the soil surface bare, and covered with turf grasses. Mean monthly water use increased with increasing soil matric potential for drip irrigation and was greatest in the WT45 treatment. Monthly crop coefficients increased linearly in time for drip-irrigated apple trees ($r^2$ values of $0.953^{***}$ for turf grass-covered system and of $0.862^{***}$ for bare surface system), while those obtained in the WT45 treatment fluctuated, Duncan's multiple range tests for shoot growth showed that grass-covered IR50 was most favorable to apple trees. while bare surface waterlogged situation was most adverse at least in part due to a lack of oxygen in the root zone. Mid-season leaf Kjeldahl-N was higher in drip-irrigated apple trees than in WT45 trees, while soil Kjeldahl-N was not different irrespective of treatments.

  • PDF

Esitmating of the Watershed Average Infiltration Coefficient Using the Guelph Permeameter (현장투수계를 이용한 유역의 평균침투계수 산정)

  • 박승기;김태철;안병기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.506-511
    • /
    • 1999
  • Three of the most important factors governing liquid transmission inunsaturated soils are field-saturated hydraulic conductivity, Kfs matric flux potential , ${\Phi}$m and sorptivity, S. The Guelph Permeameter is an in-hole constant-head permeameter, employing the Mariotte Principle. The study was carried out to investiate the characteristics of the water hsed average infiltration coefficient measured by the Guelph Permeameter at the Backokpo watershed in the Han river and at the Bandong watershed in the Keum river.

  • PDF

A Conceptual Design on Performance Test Facility of Disposal Cover for the Near Surface Disposal of Low and Intermediate Level Radioactive Waste (중.저준위 방사성폐기물 천층처분을 위한 처분덮개의 성능실증 시험시설 개념설계)

  • 이찬구;박세문;김창락;염유선;이은용
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.245-254
    • /
    • 2001
  • The experimental study on disposal cover through the performance test facility offers reliability in the safety of near surface disposal of low and intermediate level radioactive waste. To ensure the long-term safety of the repository, the impermeability, integrity, resistance to degradation and ease of maintenance might be considered as the basic performance requirement of the disposal cover. considering the difficulties to meet these performance requirement by using single layer, the disposal cover design which is composed of top layer, middle drainage layer and bottom low permeability layer is schemed for the test facility. The water balance of the cover was evaluated by using HELP code. For the long-term monitoring of the soil moisture content and matric potential, TDR probes and tensiometers will be installed in 6 test cells. Each test cell is dimensioned 3$\times$3$\times$3.3m.

  • PDF

Classification of Soil Series by the Hydraulic Properties (수리학적 토양통군의 분류)

  • Park, Seung-Ki;Jeong, Jae-Hun;Lee, Chang-Soo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.217-220
    • /
    • 2002
  • This study was carried out to investigate the characteristics of the field-saturated hydraulic conductivity$(K_{fs})$ and matric flux potential$({\Phi}_m)$ measured by the Guelph Permeameter at the Backokpo watershed in the Han river and at the Bangdong watershed in the Keum river. And the Alpha $({\alpha})$ value which is the ratio of $K_{fs}$ to ${\Phi}_m$ were determined and the ${\alpha}$ values along with the defined soil series could be utilized to classify the soil in the Korean watershed into the SCS hydrologic soil groups.

  • PDF

Artificial Rainfall Test of the Engineered Cover Barriers for Near Surface Disposal of LILW

  • Park, Jin-Beak;Park, Se-Moon;Kim, Chang-Lak
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.306-314
    • /
    • 2003
  • Engineered barrier test facility is specially designed to demonstrate the performance of engineered barrier system for the near-surface disposal facility under the domestic environmental conditions. Comprehensive measurement systems for the water content, temperature, matric potential are installed within each test cell. In this study, short-term monitoring of the behavior of multi-layered cover system is implemented with artificial rainfall system. The periodic measurement data are collected and analyzed by a dedicated database management system, and provide a basis for performance verification of the disposal cover design.

  • PDF

Spatial Variability of Hydraulic Properties in a Multi-Layered Soils of Japanese Larch (Larix leptolepis) Stand (낙엽송림분의 다층구조 토광에 있어서 수리특성의 공간 변리)

  • Chung Doug Young;Jin Hyun O
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 1999
  • Soil structure and organic matter have been known to strongly affect water flow and solute transport, yet little information is available concerning soil hydraulic properties related to soil physical and chemical properties in the forest site. The purpose of this study was to quantify the spatial variability and spatial correlation of the measured parameter values from the plots established with the rainfall simulator on Japanese larch(Larix leptolepis) dominated site in Kwangju. Kyunggi-Do. Measurement of soil water flux and retention were made with the inherent soil texture, soil structure, and organic matter. The method was based on the observation that when water was applied at a constant rate to the soil surface on each plot. The method was simple to apply and consists of following steps: (i) Wet the soil from a rainfall simulator with several known discharge rates on a relatively leveled soil surface with and without organic matter. (ii) Once the borders of the ponded zone were steady, saturated hydraulic conductivity( $K_{s}$) and the matric flux function(F) was evaluated from a regression of flux vs. the reciprocal of the ponded area. A conductivity of the form $K_{i+}$$_1$ $_{c}$= $K_{i}$( $_{c}$) [1-d /dz] where flux continuity implies. For this, continuity of matric potential at the interface at all times are as follows: $_1$( $Z_{c}$) = $_2$( $Z_{c}$) = $_{c}$ for steady state intake from water ponded on the soil surface. Results of this investigation showed the importance of understanding spatial variability in wide differences of water retention and saturated hydraulic conductivity with respect to pore geometry and organic matter contents which influenced the water flux throughout the soil profile.l profile.ile.

  • PDF