• 제목/요약/키워드: Matlab simulation

Search Result 1,410, Processing Time 0.028 seconds

An Efficient Tag Identification Algorithm using Bit Pattern Prediction Method (비트 패턴 예측 기법을 이용한 효율적인 태그 인식 알고리즘)

  • Kim, Young-Back;Kim, Sung-Soo;Chung, Kyung-Ho;Kwon, Kee-Koo;Ahn, Kwang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.285-293
    • /
    • 2013
  • The procedure of the arbitration which is the tag collision is essential because the multiple tags response simultaneously in the same frequency to the request of the Reader. This procedure is known as Anti-collision and it is a key technology in the RFID system. In this paper, we propose the Bit Pattern Prediction Algorithm(BPPA) for the efficient identification of the multiple tags. The BPPA is based on the tree algorithm using the time slot and identify the tag quickly and efficiently using accurate bit pattern prediction method. Through mathematical performance analysis, We proved that the BPPA is an O(n) algorithm by analyzing the worst-case time complexity and the BPPA's performance is improved compared to existing algorithms. Through MATLAB simulation experiments, we verified that the BPPA require the average 1.2 times query per one tag identification and the BPPA ensure stable performance regardless of the number of the tags.

An Analysis on the Resolution of Tomographic Images in STAM (STAM 토모그라픽 영상의 분해능 해석)

  • Hwang, Ki-Hwan;Ko, Dae-Sik;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • In this paper, we analyzed the resolution of tomographic images which can be obtained with Scanning Tomographic Acoustic Microscope(STAM) utilizing the acousto-optic effect. To realize this, lateral and depth resolutions of both ultrasonic transducer and specimen rotating device are obtained by using BFP tomographic reconstruction algorithm. Simulation results show that both rotating devices have a good depth resolution of $1.5{\lambda}$. For the lateral resolution, the specimen rotating device produces $0.53{\lambda}$ in the x and y directions and the transducer rotating device produces $0.56{\lambda}$ and $0.70{\lambda}$ in the x and y directions respectively. These results imply that the specimen rotating device is more suitable for STAM system construction.

  • PDF

Development of Advanced Emergency Braking Algorithm for the enhanced longitudinal safety (종방향 안전도 향상을 위한 자동비상제동 알고리즘 개발)

  • Lee, Taeyoung;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents a development of the Advanced Emergency Braking (AEB) Algorithm for passenger vehicles. The AEB is the system to slow the vehicle and mitigate the severity of an impact when a rear end collision probability is increased. To mitigate a rear end collision, the AEB comprises of a millimeter wave radar sensor, CCD camera and vehicle parameters of which are processed to judge the likelihood of a collision occurring. The main controller of the AEB algorithm is composed of the two control stage: upper and lower level controller. By using the collected obstacle information, the upper level controller of the main controller decides the control mode based not only on parametric division, but also on physical collision capability. The lower level controller determines warning level and braking level to maintain the longitudinal safety. To decide the braking level, Last Ponit To Brake and Steer (LPTB/LPTS) are compared with current driving statues. To demonstrate the control performance of the proposed AEBS algorithm's, closed-loop simulation of the AEBS was conducted by using the Matlab simlink and CarSim software.

Development of gradient composite shielding material for shielding neutrons and gamma rays

  • Hu, Guang;Shi, Guang;Hu, Huasi;Yang, Quanzhan;Yu, Bo;Sun, Weiqiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2387-2393
    • /
    • 2020
  • In this study, a gradient material for shielding neutrons and gamma rays was developed, which consists of epoxy resin, boron carbide (B4C), lead (Pb) and a little graphene oxide. It aims light weight and compact, which will be applied on the transportable nuclear reactor. The material is made up of sixteen layers, and the thickness and components of each layer were designed by genetic algorithm (GA) combined with Monte Carlo N Particle Transport (MCNP). In the experiment, the viscosities of the epoxy at different temperatures were tested, and the settlement regularity of Pb particles and B4C particles in the epoxy was simulated by matlab software. The material was manufactured at 25 ℃, the Pb C and O elements of which were also tested, and the result was compared with the outcome of the simulation. Finally, the material's shielding performance was simulated by MCNP and compared with the uniformity material's. The result shows that the shielding performance of gradient material is more effective than that of the uniformity material, and the difference is most noticeable when the materials are 30 cm thick.

A Novel Hybrid MPPT Control for Photovoltaic System (태양광 발전시스템의 새로운 하이브리드 MPPT)

  • Kim, Soo-Bin;Jo, Yeong-Min;Kim, Hyeong-Jin;Song, Seung-Ho;Choi, Ju-Yeop;Choy, Ick;Lee, Young-Kwoun
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.43-52
    • /
    • 2015
  • The performance of a photovoltaic array is affected by temperature, solar insolation, partial shading effect, and array configuration. Maximum power point tracking(MPPT) techniques are employed in photovoltaic systems to make full utilization of the PV array output power which depends on solar irradiation and ambient temperature. As much as MPPT is important in photovoltaic systems, many MPPT techniques have been developed. In this paper, several major existing MPPT methods are comparatively analyzed and novel hybrid MPPT algorithm is proposed. The proposed hybrid MPPT algorithm is developed in combination with traditional MPPT methods to complement each other for improving performance and mitigating partial shading effects. The proposed algorithm is implemented and validated using MATLAB/Simulink simulation tool.

Improvement of PLL Method for Voltage Control of Dynamic Voltage Restorer (동적전압보상기의 전압제어를 위한 PLL 방식의 개선)

  • Kim, Byong-Seob;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.936-943
    • /
    • 2009
  • Dynamic voltage restorer(DVR) is now more preferable enhancement than other power quality enhancement in industry to reduce the impact of voltage faults, especially voltage sags to sensitive loads. The main controllers for DVR consists of PLL(phase locked loop), compensation voltage calculator and voltage compensator. PLL detects the voltage faults and phase. Compensation voltage calculator calculates the reference voltage from the source voltage and phase. With calculated compensation voltage from PLL, voltage compensator restores the source voltage. If PLL detect ideal phase, compensation voltage calculator calculates ideal compensation voltage. Therefore, PLL for DVR is very important. This paper proposes the new method of PLL in DVR. First, the power circuit of DVR system is analyzed in order to compensate the voltage sags. Based on the analysis, new PLL for improving transient response of DVR is proposed. The proposed method uses band rejection filter(BRF) at q-axis in synchronous flame. In order to calculate compensation voltage in commercial instruments, the PQR theory is used. Proposed PLL method is demonstrated through simulation using Matlab-Simulink and experiment, and by checking load voltage, confirms operation of the DVR

Analysis of Flashover Rate by Lightning in Korea Distribution Line using CRIEPI Method (CRIEPI 방식을 이용한 국내 가공 배전선로에서의 뇌 섬락률 산정)

  • Choi, Sun-Kyu;Seo, Hun-Chul;Han, Jun;Kim, Chul-Hwan;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper analyzes the flashover rate by lightning in Korea distribution system. Because of random characteristics of lightning, the Monte Carlo method is applied to estimate the lightning performance. The magnitude of lightning stroke is based on the curve measured in field. The classification of direct and indirect lightning depends on the striking distance. The striking distance and flashover rate are calculated by using the method based on Central Research Institute of Electric Power Industry(CRIEPI). The distribution system and lightning is modeled by using EMTP and MATLAB, and the accuracy of modeling is discussed. The simulations for the various spacing between two adjacent surge arresters and the various grounding resistance of GW according to the existence of GW are performed and the simulation results are analyzed.

The Optimal Controller Design of Buck-Boost Converter by using Adaptive Tabu Search Algorithm Based on State-Space Averaging Model

  • Pakdeeto, Jakkrit;Chanpittayagit, Rangsan;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1146-1155
    • /
    • 2017
  • Normally, the artificial intelligence algorithms are widely applied to the optimal controller design. Then, it is expected that the best output performance is achieved. Unfortunately, when resulting controller parameters are implemented by using the practical devices, the output performance cannot be the best as expected. Therefore, the paper presents the optimal controller design using the combination between the state-space averaging model and the adaptive Tabu search algorithm with the new criteria as two penalty conditions to handle the mentioned problem. The buck-boost converter regulated by the cascade PI controllers is used as the example power system. The results show that the output performance is better than those from the conventional design method for both input and load variations. Moreover, it is confirmed that the reported controllers can be implemented using the realistic devices without the limitation and the stable operation is also guaranteed. The results are also validated by the simulation using the topology model of MATLAB and also experimentally verified by the testing rig.

Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using Flux-weakening

  • Rohan, Ali;Asghar, Furqan;Kim, Sung Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.451-459
    • /
    • 2018
  • This work presents an approach for modeling of electric vehicle considering the vehicle dynamics, drive train, rotational wheel and load dynamics. The system is composed of IPMSM (Interior Permanent Magnet Synchronous Motor) coupled with the wheels through a drive train. Generally, IPMSM is controlled by ordinary PID controllers. Performance of the ordinary PID controller is not satisfactory owing to the difficulties of optimal gain selections. To overcome this problem, a new type of fuzzy logic gain tuner for PID controllers of IPMSM is required. Therefore, in this paper fuzzy logic based gain tuning method for PID controller is proposed and compared with some previous control techniques for the better performance of electric vehicle with an optimal balance of acceleration, speed, travelling range, improved controller quality and response. The model was developed in MATLAB/Simulink, simulations were carried out and results were observed. The simulation results have proved that the proposed control system works well to remove the transient oscillations and assure better system response in all conditions.

A Study on DC-DC Power Supply for Maglev (자기부상열차용 DC-DC 전원장치에 관한 연구)

  • Chung, Choon-Byung;Cho, Ju-Hyun;Jho, Jung-Min;Jeon, Kee-Young;Lee, Sang-Chip;Oh, Bong-Hwan;Lee, Hoon-Gu;Han, Kyung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.347-352
    • /
    • 2004
  • The author present a modified multi-loop algorithm including feedforward for controlling a 55kW step down chopper in the power supply of Maglev. The control law for the duty cycle consists of three terms. The first is the feedforward term which compensates for variations in the input voltage. The second term consists of the difference between the slowly moving inductor current and output current. The third term consists of proportional and integral terms involving the perturbation in the output voltage. This perturvation is derived by subtracting the desired output voltage from the actual output voltage. The proportional and integral action stabilizes the system and minimizes output voltage error. In order to verify the validity of the proposed multi-loop controller, simulation study was tried using Matlab simulink.

  • PDF