• Title/Summary/Keyword: Matlab representation

Search Result 12, Processing Time 0.028 seconds

Analysis of Some Strange Behaviors of Floating Point Arithmetic using MATLAB Programs (MATLAB을 이용한 부동소수점 연산의 특이사항 분석)

  • Chung, Tae-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.428-431
    • /
    • 2007
  • A floating-point number system is used to represent a wide range of real numbers using finite number of bits. The standard the IEEE adopted in 1987 divides the range of real numbers into intervals of [$2^E,2^{E+1}$), where E is an Integer represented with finite bits, and defines equally spaced equal counts of discrete numbers in each interval. Since the numbers are defined discretely, not only the number representation itself includes errors but in floating-point arithmetic some strange behaviors are observed which cannot be agreed with the real world arithmetic. In this paper errors with floating-point number representation, those with arithmetic operations, and those due to order of arithmetic operations are analyzed theoretically with help of and verification with the results of some MATLAB program executions.

DC MOTOR SPEED CONTROL USING PID CONTROLLER

  • Loucif, Fatiha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2557-2561
    • /
    • 2005
  • The PID controller design and choosing PID parameters according to system response are proposed in this paper. Here PID controller is employed to control DC motor speed and Matlab program is used for calculation and simulation. Choosing PID parameters are demonstrated by several contrast experiments and a way for setting PID parameters values is discussed.

  • PDF

Simulation of a Switched Reluctance Motors Using Matlab/M-file (Matlab/M-file을 사용한 Switched Reluctance Motor의 시뮬레이션)

  • Kim Chong-Chul;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.423-426
    • /
    • 2002
  • This paper presents a new analytical representation and simulation of the phase inductance of a Switched Reluctance Motor(SRM) using Matlab/M-file. This simulation method has many advantages: it is free from expression, can be applied widely, demonstrates inductance profile using motor parameter only, and save run time. Moreover, this simulation method can be easily realize various SRM model unlikely the existing method that limited itself to one model. And analytical expression for inductance profile is welcome as it allows for easier analysis of the motor, for it can bring insight in it working, in formulating control strategies and in achieving high accuracy in performance computations.

  • PDF

Modified Smith-Chart Representation on the Basis of the Dynamic Permittivity of a Microstrip Structure

  • Charoenwattanaporn, Monton;Goenchanart, Ut;Malisuwan, Settapong;Ungvichian, Vichate
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.512-514
    • /
    • 2002
  • The dynamic permittivity of a microstrip structure leads to a convenient and modified Smith-chart representation that includes the frequency-dependent influence of the lossy characteristics of the line cohesively. The efficacy of the model is illustrated with an example concerning a microstrip patch antenna. Relevant simulations show that the input impedances calculated from the model are more accurate than those from the previous model in the literature by comparing to the measure results, as illustrated with an example of a patch antenna. This model is compatible for CAD efforts with MATLAB$\^$TM/ facilitation fast and user-friendly implementations.

  • PDF

$\alpha$-$\beta$Current and Power Components Analysis of Instantaneous Power Theory Using MATLAB/SIMULINK (MATLAB/SIMULIN에 의한 순시전력이론의 $\alpha$-$\beta$ 전류 및 전력성분 해석)

  • 정영국;임영철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.88-96
    • /
    • 2000
  • The instantaneous power theory have been considered as efficient theory in recent years, because it is easier to understand numerical representation and more soft to control PWM power converter on $\alpha$-$\beta$ stationary reference frame. From the forgoing theory, with regard to the calculating process of compensating reference current, there are many induced components of current/ power, and these components have consequently influence on physical interpretation of instantaneous power theory. Especially, beginners for studing the instantaneous power theory don't have enough informations for standard waveform of induced $\alpha$-$\beta$ components. Therefore, this paper describes simulation works using MATLAB/SIMULINK for $\alpha$-$\beta$ space trajectories and waveforms of $\alpha$-$\beta$ current and power components, induced from the instantaneous power theory. It is respected that the results in this paper are serviceable as basic information to assist beginner for studing the instantaneous power theory.

  • PDF

3-D Topology Optimization by a Nodal Density Method Based on a SIMP Algorithm (SIMP 기반 절점밀도법에 의한 3 차원 위상최적화)

  • Kim, Cheol;Fang, Nan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.412-417
    • /
    • 2008
  • In a traditional topology optimization method, material properties are usually distributed by finite element density and visualized by a gray level image. The distribution method based on element density is adequate for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtualconnect phenomenon especially in a low-density domain. The 3-D structural topology optimization method has been developed using the node density instead of the element density that is based on SIMP (solid isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to validate the proposed method. When it was compared to the element density as design variable, this method could get a more uniform density distribution. To show the usefulness of this method, several typical examples of structure topology optimization are presented.

  • PDF

XFEM for fatigue and fracture analysis of cracked stiffened panels

  • Kumar, M.R. Nanda;Murthy, A. Ramachandra;Gopinath, Smitha;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.65-89
    • /
    • 2016
  • This paper presents the development of methodologies using Extended Finite Element Method (XFEM) for cracked unstiffened and concentric stiffened panels subjected to constant amplitude tensile fatigue loading. XFEM formulations such as level set representation of crack, element stiffness matrix formulation and numerical integration are presented and implemented in MATLAB software. Stiffeners of the stiffened panels are modelled using truss elements such that nodes of the panel and nodes of the stiffener coincide. Stress Intensity Factor (SIF) is computed from the solutions of XFEM using domain form of interaction integral. Paris's crack growth law is used to compute the number of fatigue cycles up to failure. Numerical investigations are carried out to model the crack growth, estimate the remaining life and generate damage tolerant curves. From the studies, it is observed that (i) there is a considerable increase in fatigue life of stiffened panels compared to unstiffened panels and (ii) as the external applied stress is decreasing number of fatigue life cycles taken by the component is increasing.

Topology Optimization based on Monte Carlo Analysis (몬테카를로 해석 기반 확률적 위상최적화)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.153-158
    • /
    • 2017
  • In this paper, we take into account topology optimization problems considering spatial randomness in the material property of elastic modulus. Based on 88 lines MATLAB Code, Monte Carlo analysis has been performed for MBB(messerschmidt-$b{\ddot{o}}lkow$-blohm) model using 5,000 random sample fields which are generated by using the spectral representation scheme. The random elastic modulus is assumed to be Gaussian in the spatial domain of the structure. The variability of the volume fraction of the material, which affects the optimum topology of the given problem, is given in terms of correlation distance of the random material. When the correlation distance is small, the randomness in the topology is high and vice versa. As the correlation distance increases, the variability of the volume fraction of the material decreases, which comply with the feature of the linear static analysis. As a consequence, it is suggested that the randomness in the material property is need to be considered in the topology optimization.

Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator

  • Wei, Shaoqing;Zhang, Zhan;Lee, Sangjin;Kim, Do Gyun;Kim, Jang Youl
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.40-43
    • /
    • 2016
  • Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in $Opera^{TM}$. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With $Opera^{TM}$ and $Matlab^{TM}$ programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper.

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.