• Title/Summary/Keyword: Matlab program

Search Result 443, Processing Time 0.025 seconds

FINITE ELEMENT MODEL TO STUDY TWO DIMENSIONAL UNSTEADY STATE CYTOSOLIC CALCIUM DIFFUSION

  • Tewari, Shivendra Gajraj;Pardasani, Kamal Raj
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.427-442
    • /
    • 2011
  • Calcium is a vital second messenger for signal transduction in neurons. Calcium plays an important role in almost every part of the human body but in neuronal cytosol, it is of utmost importance. In order to understand the calcium signaling mechanism in a better way a finite element model has been developed to study the flow of calcium in two dimensions with time. This model assumes EBA (Excess Buffering Approximation), incorporating all the important parameters like time, association rate, influx, buffer concentration, diffusion constant etc. Finite element method is used to obtain calcium concentration in two dimensions and numerical integration is used to compute effect of time over 2-D Calcium profile. Comparative study of calcium signaling in two dimensions with time is done with other important physiological parameters. A MATLAB program has been developed for the entire problem and simulated on an x64 machine to compute the numerical results.

Experiment Based Dynamic Analysis for High Accuracy Control of Feed System (이송계 고정도 제어를 위한 동특성 실험분석)

  • Kim, Shung-Hyun;Jeong, Jae-Hyun;Kim, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.729-737
    • /
    • 2009
  • This paper introduces the machine tools feed system, which can be optimized the control's performance through simulation and the adjustment of the mechanical components. One method simulates the frequency response of the speed-loop with the design value using the MATLAB application, so that all of the interpolation axis can be equal to the response bandwidth, resulting in a high accuracy rate. The other method sees the mechanical component being adjusted by analyzing the results of various experiments. Lastly, this client's program is able to change the parameters that are related to the FFD, as well as the parameters in the friction compensation of the OPEN-CNC.

Modeling of Electrical Characteristics in Poly Silicon Thin Film Transistor with Process Parameter (다결정 실리콘 박막 트랜지스터에서 공정 파라미터에 따른 전기적 특성의 모델링)

  • Jung, Eun-Sik;Choi, Young-Sik;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, for modeling of electrical characteristics in Poly Silicon Thin Film Transistors with process parameters set up optimum values, So, the I-V characteristics of poly silicon TFT parameters are examined and simulated in terms of the variations in process parameter. And these results compared and analyzed simulation values with examination value. The simulation program for characteristic analysis used SUPREM IV for processing, Matlab for modeling by mathematics, and SPICE for electric characteristic of devices. Input parameter for simulation characteristics is like condition of device process sequence, these electric characteristic of $I_D-V_D$ $I_D-V_G$, variations of grain size. The Gate oxide thickness of poly silicon are showed similar results between real device characteristics and simulation characteristics.

  • PDF

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

Simulation of active vibration control using phase adjusting method with high speed flexible rotor system (초고속 유연회전체의 위상조절법을 이용한 능동진동제어 시뮬레이션)

  • Na J.B.;Kim K.S.;Lee W.C.;Kim C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.425-426
    • /
    • 2006
  • This study proposes a new simulation method of high speed rotor system with the dynamic model using multi body dynamic analysis tool and with a new phase modulating technique as a system control algorithm. A dynamic model of high speed rotor system was built by, ADAMS, commercial multi body dynamic program. The phase modulating technique is a new control algorithm for a rotor system. This algorithm can control system using an adaptive proportional gain and an adaptive phase which are obtained from periodical input signal. To make control system, a ADAMS model and component parameters and phase controller was composed by Matlab Simulink And simulate it.

  • PDF

Installation Error Calibration by Using Levenberg-Marquardt Method on a Cubic Parallel Manipulator (Levenberg-Marquardt 방법을 이용한 육면형 병렬기구의 설치 오차 보정)

  • 임승룡;임현규;최우천;송재복;홍대희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.184-191
    • /
    • 2003
  • A parallel manipulator has high stiffness and all the joint errors on the device are not accumulated at the end -effector unlike a serial manipulator. These are the reasons why the parallel manipulator has been widely used in many fields of industry. In the parallel manipulator, it is very important to predict the exact pose of the end-effector when we want to control the end-effector motion. Installation errors have to be determined in order to predict and control the actual position and pose of the end-effector. This paper presents an algorithm to find the whole 36 joint error components with joint clearance errors and measurement errors considered, when a link length measurement sensor is used and data more than 36 times are acquired for 36 different configurations. A simulation test using this algorithm is performed with a Matlab program which uses the Levenberg-Marquardt method that is known to be efficient for non-linear optimization.

A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle (플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구)

  • 송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

Derivation and Verification of the Relative Dynamics Equations for Aerial Refueling (공중재급유를 위한 상대운동방정식 유도 및 검증)

  • Jang, Jieun;Lee, Sangjong;Ryu, Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • This paper addresses the derivation of 6-DOF equation of Tanker and Receiver's aircraft for aerial refueling. The new set of nonlinear equations are derived in terms of the relative translational and rotational motion of receiver aircraft respect to the tanker aircraft body frame. Further the wind effect terms due to the tanker's turbulence are included. The derivation of absolute dynamic equation for tanker aircraft written in the inertial frame is calculated from the relative dynamics equations of receiver. The derived relative and absolute equations are implemented the simulation in the same flight conditions to verify the relative motion and compare the trim results by using the MATLAB/SIMULINK program.

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

A Torque Ripple Reduction Drive Strategy for Permanent Magnet Brushless DC Motor with Imperfect Back Electromotive Force (역기전력을 고려 한 브러시레스 전동기의 토크리플 저감에 관한 구동 방식에 대한 연구)

  • Sun, Tao;Nam, Gi-Yong;Lee, Geun-Ho;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.781-782
    • /
    • 2006
  • This paper presents a drive strategy to reduce torque ripple of a permanent magnet Brushless DC Motor(BLDCM) with short $120^{\circ}$ flat top Back Electromotive Force(Back-EMF). In this strategy, the phase Back-EMF is divided into four sections. Then, in each section the phase current is regulated by corresponding PWM duty ratio to compensatethe torque ripple caused by imperfect Back-EMF. A program based on this strategy has been implemented in MATLAB@Simulink. The validity of the presented method is verified by simulation results.

  • PDF