• Title/Summary/Keyword: Matlab program

Search Result 442, Processing Time 0.027 seconds

Development of an Analysis Program for Small Horizontal Wind Turbines Considering Side Furling and Optimal Torque Scheduling (사이드 펄링과 최적 토크스케줄을 고려한 소형 풍력터빈 해석 프로그램 개발)

  • Jang, Hyeon-Mu;Kim, Dong-Myeong;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.15-31
    • /
    • 2018
  • A program to design a small capacity wind turbine blade is proposed in this study. The program is based on a matlab GUI environment and designed to perform blade design based on the blade element momentum theory. The program is different from other simulation tools available in a point that it can analyze the side-furling power regulation mechanism and also has an algorithm to find out optimal torque schedule above the rated wind speed region. The side-furling power regulation is used for small-capacity horizontal axis wind turbines because they cannot use active pitch control due to high cost which is commonly used for large-capacity wind turbine. Also, the torque schedule above the rated wind speed region should be different from that of the large capacity wind turbines because active pitching is not used. The program developed in this study was validated with the results with FAST which is the only program that can analyze the performance of side-furled wind turbines. For the validation a commercial 10 kW wind turbine data which is available in the literature was used. From the validation, it was found that the performance prediction from the proposed simple program is close to those from FAST. It was also found that the optimal torque scheduling from the proposed program was found to increase the turbine power substantially. Further experimental validation will be performed as a future work.

Development of Optimal Control System for Air Separation Unit

  • Ji, Dae-Hyun;Lee, Sang-Moon;Kim, Sang-Un;Kim, Sun-Jang;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.524-529
    • /
    • 2004
  • In this paper, We described the method which developed the optimal control system for air separation unit to change production rates frequently and rapidly. Control models of the process were developed from actual plant data using subspace identification method which is developed by many researchers in resent years. The model consist of a series connection of linear dynamic block and static nonlinear block (Wiener model). The model is controlled by model based predictive controller. In MPC the input is calculated by on-line optimization of a performance index based on predictions by the model, subject to possible constraints. To calculate the optimal the performance index, conditions are expressed by LMI(Linear Matrix Inequalities).In order to access at the Bailey DCS system, we applied the OPC server and developed the Client program. The OPC sever is a device which can access Bailey DCS system.The Client program is developed based on the Matlab language for easy calculation,data simulation and data logging. Using this program, we can apply the optimal input to the DCS system at real time.

  • PDF

Institutional Applications of Eclipse Scripting Programming Interface to Clinical Workflows in Radiation Oncology

  • Kim, Hojin;Kwak, Jungwon;Jeong, Chiyoung;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.122-128
    • /
    • 2017
  • Eclipse Scripting Application Programming Interface (ESAPI) was devised to enhance the efficiency in such treatment related workflows as contouring, treatment planning, plan quality measure, and data-mining by communicating with the treatment planning system (TPS). It is provided in the form of C# programming based toolbox, which could be modified to fit into the clinical applications. The Scripting program, however, does not offer all potential functionalities that the users intend to develop. The shortcomings can be overcome by combining the Scripting programming with user-executable program on Windows or Linux. The executed program has greater freedom in implementation, which could strengthen the ability and availability of the Scripting on the clinical applications. This work shows the use of the Scripting programming throughout the simple modification of the given toolbox. Besides, it presents the implementation of combining both Scripting and user-executed programming based on MATLAB, applied to automated dynamic MLC wedge and FIF treatment planning procedure for promoting the planning efficiency.

Power Quality Control of Wind/Diesel Hybrid Power Systems Using Fuzzy PI Controller (퍼지 PI 제어기를 이용한 풍력/디젤 하이브리드 발전시스템의 품질제어)

  • Yang, Su-Hyung;Ko, Jung-Min;Boo, Chang-Jin;Kang, Min-Jae;Kim, Jeong-Uk;Kim, Ho-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.1-10
    • /
    • 2012
  • This paper proposes a modeling and controller design approach for a wind-diesel hybrid system including dump load. Wind turbine depends on nature such as wind speed. It causes power fluctuations of wind turbine. Excessive power fluctuation at stand-alone power grid is even worse than large-scale power grid. The proposed control scheme for power quality is fuzzy PI controller. This controller has advantages of PI and fuzzy controller. The proposed model is carried out by using Matlab/Simulink simulation program. In the simulation study, the proposed controller is compared with a conventional PI controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-diesel hybrid power system.

A Study on the Development of a Real Time Simulator for the ESP (Electronic Stability Program) (전자식 차체 자세 제어 장치를 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.48-55
    • /
    • 2019
  • The Electronic Stability Program (ESP), a system that improves vehicle safety, also known as YMC (Yaw Motion Controller) or VDC (Vehicle Dynamics Control), is a system that operates in unstable or sudden driving and braking situations. Developing conditions such as unstable or sudden driving and braking situations in a vehicle are very dangerous unless you are an experienced professional driver. Additionally, many repetitive tests are required to collect reliable data, and there are many variables to consider such as changes in the weather, road surface, and tire condition. To overcome this problem, in this paper, hardware and control software such as the ESP controller, vehicle engine, ABS, and TCS module, composed of three control zones, are modeled using MATLAB/SIMULINK, and the vehicle, climate, and road surface. Various environmental variables such as the driving course were modeled and studied for the real-time ESP real-time simulator that can be repeatedly tested under the same conditions.

Development of power system stabilization program using optimization method (최적화 기법이 적용된 전력계통 안정화 시스템 개발)

  • Ahn, Chang-Han;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.370-374
    • /
    • 2015
  • Various protective equiptments are used for the power system control and protection. Numerous facilities are monitored at the same time in real time and introduction of optimization method and analysis of the method are required for generation control and facility management considering the demand fluctuations. However, the existing system analysis programs are difficult to link with the other sw and there are some problems with user convenience. To solve these problems the present conditions of the system are figured out in real time and the equipment insert method was estimated by optimization method, and the system that showed the system analysis program is developed. PSS/E has been used as system anlysis program for stabilizing system development which applied the optimization. method and Python language is applied in order to link the input and output values with the DB automatically. Lastly, DLL of matlab has been made included in C++ for solving the objective function using opmization method.By linking this to DB, power flow was calculated in PSS/E and the result was represented by Intouch screen.

A Study on Room Acoustic Field Analysis using Radiosity Method (라디오시티법을 이용한 실내 음향장 해석 연구)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.394-400
    • /
    • 2018
  • Various numerical methods have been adopted for indoor noise assessments of ship plant. Acoustical radiosity method is one of the high frequency approaches for acoustic field analysis, which assumes diffuse reflections by boundaries so that it could be efficiently applied to the acoustically diffused indoor space noise analysis. In this study, an acoustic field analysis program has been developed based on radiosity method, which could apply for acoustically large enclosures such as ship's indoor space. For this purpose, the procedure of the acoustical radiosity method has been summarized and implemented to an acoustic field analysis program using MATLAB. Numerical example for a rectangular indoor space has investigated validity of the implemented program. Steady state sound pressure levels calculated for a continuous acoustic source signal have shown good agreement with those by other solutions such as an analytic solution and a ray tracing method. Instantaneous sound pressure levels calculated for an impulsive acoustic signal have provided the clues of direct/reflected acoustic field and reverberation time.

Applied 2D equivalent linear program to analyze seismic ground motion: Real case study and parametric investigations

  • Soltani, Navid;Bagheripour, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Seismic ground response evaluation is one of the main issues in geotechnical earthquake engineering. These analyses are subsequently divided into one-, two- and three-dimensional methods, and each of which can perform in time or frequency domain. In this study, a novel approach is proposed to assess the seismic site response using two-dimensional transfer functions in frequency domain analysis. Using the proposed formulation, a program is written in MATLAB environment and then promoted utilizing the equivalent linear approach. The accuracy of the written program is evaluated by comparing the obtained results with those of actual recorded data in the Gilroy region during Loma Prieta (1989) and Coyote Lake (1979) earthquakes. In order to precise comparison, acceleration time histories, Fourier amplitude spectra and acceleration response spectra diagrams of calculated and recorded data are presented. The proposed 2D transfer function diagrams are also obtained using mentioned earthquakes which show the amount of amplification or attenuation of the input motion at different frequencies while passing through the soil layer. The results of the proposed method confirm its accuracy and efficiency to evaluate ground motion during earthquakes using two-dimensional model. Then, studies on irregular topographies are carried out, and diagrams of amplification factors are shown.

TET2DICOM-GUI: Graphical User Interface Based TET2DICOM Program to Convert Tetrahedral-Mesh-Phantom to DICOM-RT Dataset

  • Se Hyung Lee;Bo-Wi Cheon;Chul Hee Min;Haegin Han;Chan Hyeong Kim;Min Cheol Han;Seonghoon Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.172-179
    • /
    • 2022
  • Recently, tetrahedral phantoms have been newly adopted as international standard mesh-type reference computational phantoms (MRCPs) by the International Commission on Radiological Protection, and a program has been developed to convert them to computational tomography images and DICOM-RT structure files for application of radiotherapy. Through this program, the use of the tetrahedral standard phantom has become available in clinical practice, but utilization has been difficult due to various library dependencies requiring a lot of time and effort for installation. To overcome this limitation, in this study a newly developed TET2DICOM-GUI, a TET2DICOM program based on a graphical user interface (GUI), was programmed using only the MATLAB language so that it can be used without additional library installation and configuration. The program runs in the same order as TET2DICOM and has been optimized to run on a personal computer in a GUI environment. A tetrahedron-based male international standard human phantom, MRCP-AM, was used to evaluate TET2DICOM-GUI. Conversion into a DICOM-RT dataset applicable in clinical practice in about one hour with a personal computer as a basis was confirmed. Also, the generated DICOM-RT dataset was confirmed to be effectively implemented in the radiotherapy planning system. The program developed in this study is expected to replace actual patient data in future studies.

Development of an Automatic Measuring Program for the Craniovertebral Angle Using Photographic Image (사진 영상을 이용한 머리척추각 자동 측정 프로그램 개발)

  • Soo-Young Ye;Jong-Soon Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: The prevalent use of mobile devices may contribute to musculoskeletal disorders, such as forward head posture (FHP), among users. The measurement of the craniovertebral angle (CVA) using photographic images is frequently employed in assessing FHP. Although manual CVA measurement using photographic images is reliable in clinical settings, computer programs or mobile applications to support tele-physical therapy are not yet fully developed. Therefore, in the current study, we propose an automatic method for extracting CVA from photographic images of FHP subjects to facilitate tele-physical therapy. Methods: To develop the automatic CVA measuring computer program, photographic images were obtained from 10 FHP participants. The location information obtained from the markers attached to the tragus and the spinous process of the seventh cervical vertebra were used as coordinates. Using these coordinates, straight line 1 was generated by connecting the seventh spinous process of the cervical vertebra and the tragus, while straight line 2 was drawn parallel to the coordinate obtained from the seventh spinous process of the cervical vertebra. The arc tangent function was used to calculate the angle between the two straight lines. The automatic CVA measurement computer program utilizing photographic images was developed using MATLAB (ver. 2016b). Results: The results showed that the automatic CVA measurement computer program demonstrated stable repeatability and high accuracy. Conclusion: The proposed approach was able to automatically estimate the CVA using photographic images. The developed computer program can potentially be used for easier and more reliable clinical assessment of FHP.