• Title/Summary/Keyword: Matlab/simulink model

Search Result 416, Processing Time 0.023 seconds

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.

A Study on the Physical Modeling of the Shaft Generator and the Fuel Consumption Verification Simulation of a Tugboat using Simulink (Simulink를 이용한 터그보트의 샤프트제너레이터 물리모델링 및 연료소모율 검증 시뮬레이션에 관한 연구)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • In recent years, the importance of environmental regulations is increasing in the shipping industry, and the demands of the industry for this are rapidly increasing. Accordingly, the demand of ship owners is increasing as the shaft generator is a technology that responds to environmental regulations that can be applied to ships the fastest. The shaft generator is a device that can increase the fuel consumption rate of the main propulsion engine by installing an electric motor in the main propulsion engine and using it variably according to the load environment. It operates by the power of the motor at low speeds, and when a sudden load is required, the main propulsion engine and motor operate together, enabling efficient operation. In this paper, the diesel engine and shaft generator of a tug boat are modeled using MATLAB Simulink, and the fuel consumption rate is verified through simulation.

Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System (퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어)

  • Kim, Seung-Ki;Chang, Hyo-Whan;Kim, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.

Development of Wheel Loader V-Pattern Operator Model for Virtual Evaluation of Working Performance (휠로더 가상 성능평가를 위한 V상차 작업 운전자 모델)

  • Oh, Kwangseok;Kim, Hakgu;Ko, Kyungeun;Kim, Panyoung;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1201-1206
    • /
    • 2014
  • This paper presents the development of an event-based operator model of a wheel loader for virtual V-pattern working. The objective of this study is to analyze the performance and dynamic behavior of the wheel loader for a typical V-pattern. The proposed typical V-pattern working is divided into four stages. The developed operator model is based on eight events, and the operator's inputs are occurred sequentially by event. A 3D dynamic simulation model of the wheel loader is developed and used to analyze the dynamic behavior during working, and the simulation results are compared with the experimental data of V-pattern working. The proposed 3D dynamic simulation model and operator model are constructed using MATLAB/Simulink. The proposed operator model for V-pattern working is expected to enable evaluation of the working performance and dynamic behavior of the wheel loader.

Simulation and Analysis of Dynamic Characteristics of a Turbo-shaft Engine (터보 축 엔진의 동적특성 해석 및 시뮬레이션)

  • Kim, Se-Hyun;Kim, Hae-Dong;Park, Sung-Su;Yoon, Sug-Joon;Kim, Jae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.315-318
    • /
    • 2007
  • A dynamic simulation of a turbo-shaft engine was performed for analysis of transient-state and engine-starting characteristics using the MATLAB/SIMULINKTM. The turbo-shaft engine was modelled based on thermodynamic and rotor dynamic relations. The analysis of engine starting characteristics was performed by monitoring the rate of the pressure, temperature and mechanical torque changes along the engine stations by the torque input generated from the accessary power unit and transmitted to the power turbine. The simulation of the transient-state characteristics of the engine was performed under fuel flow rate increase from the steady-state condition. For the future study, engine control unit will be added to the basic turbo-shaft engine model to enhance capability of engine performance simulation.

  • PDF

Study on Concurrent Simulation Technique of Matlab CMDPS and A CarSim Base Full Car Model (매트랩 CMDPS와 카심 기반 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bongchoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1555-1560
    • /
    • 2013
  • The Column type Motor Driven Power Steering(CMDPS) systems are generally equipped among passenger vehicles ensuring better vehicle safety and fuel economy. In general to analyze systems and to develop a controller a full vehicle model from CarSim developed by Mechanical Simulation Incorporation interacting with MDPS control algorithm from Matlab Simulink was concurrently simulated. This paper describes the development of concurrent simulation technique in detail for analyzing Matlab Simulink MDPS control system with a dynamic vehicle system because the specific method has not been revealed in detail. The steering wheel angle input was evaluated and well compared with proving ground experimental data. The comparisons from concurrent simulation show an effective way to develop and validate the control algorithm. This concurrent simulation capability will be efficiently used for CMDPS performance evaluation and logic tuning as well as for vehicle handling performance.

Design of a decentralized multilevel control for thermal power plant (발전플랜트의 다단계 분산제어기 설계)

  • 이은호;김석우;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1217-1220
    • /
    • 1996
  • For the purpose of the good tracking to variable load demands of the thermal power plant, a decentralized multilevel control(DMC) scheme is presented. It is applied to the drum type boiler-turbine system which is simplified from Boryung T/P #1,2 model[4]. A linearized model is decomposed into three subsystems by means of linear transformation. Then the DMC based on such subsystem is designed. Simulation using Matlab-Simulink shows that the proposed algorithm works very well to the large step change of power demand.

  • PDF

The Analysis and Control of Compressed Gas Discharging System (압축가스 방출 유압시스템 해석 및 제어)

  • 장웅락;김정관;한명철;정찬희;박인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.458-462
    • /
    • 2004
  • The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.

  • PDF

Dynamic Simulation and Analysis of the Space Shuttle Main Engine with Artificially Injected Faults

  • Cha, Jihyoung;Ha, Chulsu;Koo, Jaye;Ko, Sangho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.535-550
    • /
    • 2016
  • Securing the safety and the reliability of liquid-propellant rocket engines (LREs) for space vehicles is indispensable as engines consist of many complex components and operate under extremely high energy-dense conditions. Thus, health monitoring has become a mandatory requirement, especially for the reusable LREs that are currently being developed. In this context, a dynamic simulation program based on MATLAB/Simulink was developed in the current research on the Space Shuttle Main Engine (SSME), a partly reusable engine. Then, a series of fault simulations using this program was conducted: at a steady state operating condition (104% Rated Propulsion Level), various simulated fault conditions were artificially injected into the simulation models for the five major valves, the pumps, and the turbines of the SSME. The consequent effects due to each fault were analyzed based on the time responses of the major parameters of the engine. It is believed that this research topic is an essential pre-step for the development of fault detection and diagnosis algorithms for reusable engines in the future.

Model Based Design and Validation of Control Systems using Real-time Operating System (실시간 운영체제를 적용한 제어시스템의 모델기반 설계 및 검증)

  • Youn, Jea-Myoung;Ma, Joo-Young;SunWoo, Myoung-Ho;Lee, Woo-Taik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • This paper presents the Matlab/Simulink-based software-in-the-loop simulation(SILS) environment which is the co-simulator for temporal and functional simulations of control systems. The temporal behavior of a control system is strongly dependent on the implemented software and hardware such as the real-time operating system, the target CPU, and the communication protocol. The proposed SILS abstracts the system with tasks, task executions, real-time schedulers, and real-time networks close to the implementation. Methods to realize these components in graphical block representations are investigated with Matlab/Simulink, which is most commonly used tool for designing and simulating control algorithms in control engineering. In order to achieve a seamless development from SILS to rapid control prototyping (RCP), the SILS block-set is designed to support automatic code generation without tool changes and block modifications.